会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明申请
    • COLLABORATIVE FILTERING WITH HASHING
    • 与洗涤的协同过滤
    • US20120158741A1
    • 2012-06-21
    • US12970262
    • 2010-12-16
    • Martin B. ScholzShyamsundar RajaramRajan Lukose
    • Martin B. ScholzShyamsundar RajaramRajan Lukose
    • G06F17/30
    • G06F17/3053
    • Systems, methods, and machine readable and executable instructions are provided for collaborative filtering. Collaborative filtering includes representing users and objects by rows and columns in an ordinal ratings matrix having a particular dimensional space. Values in the ordinal ratings matrix are weighted with a weight matrix having the particular dimensional space. The weight matrix is hashed into a lower dimensional space by one of row and column by multiplying a projection matrix by the weight matrix. The ordinal ratings matrix is hashed into a lower dimensional space by multiplying the projection matrix by an element-wise product of the weight matrix and the ordinal ratings matrix to form a reduced ratings matrix, and element-wise dividing the reduced ratings matrix by the hashed weight matrix. The hashed ordinal ratings matrix and the hashed weight matrix are low-rank approximated by alternating least squares. A result of the low-rank approximation for the one of row and column is updated using the ordinal ratings matrix and the weight matrix. A recommendation of one of the objects can be generated for one of the users based on the updated result.
    • 提供系统,方法和机器可读和可执行指令用于协同过滤。 协作过滤包括用具有特定尺寸空间的序数等级矩阵中的行和列表示用户和对象。 使用具有特定尺寸空间的权重矩阵对序数等级矩阵中的值进行加权。 通过将投影矩阵乘以权重矩阵,权重矩阵通过行和列之一被散列成较低维空间。 通过将投影矩阵乘以权重矩阵和序数等级矩阵的元素乘积来将序数等级矩阵散列到较低维空间中,以形成减小的等级矩阵,并且将分数矩阵除以散列 重量矩阵。 散列序数等级矩阵和散列权重矩阵是通过交替的最小二乘法近似的低阶。 使用序数等级矩阵和权重矩阵来更新行和列之一的低阶近似的结果。 可以基于更新的结果为一个用户生成其中一个对象的推荐。
    • 6. 发明申请
    • METHODS AND SYSTEMS FOR DETERMINING UNKNOWNS IN COLLABORATIVE FILTERING
    • 用于确定协同过滤中的知识的方法和系统
    • US20110106817A1
    • 2011-05-05
    • US12609327
    • 2009-10-30
    • Rong PanMartin B. Scholz
    • Rong PanMartin B. Scholz
    • G06F17/30G06N7/02
    • G06Q30/02G06Q30/0282
    • Embodiments of the present invention are directed to methods and systems for determining unknowns in rating matrices. In one embodiment, a method comprises forming a rating matrix, where each matrix element corresponds to a known favorable user rating associated with an item or an unknown user rating associated with an item. The method includes determining a weight matrix configured to assign a weight value to each of the unknown matrix elements, and sampling the rating matrix to generate an ensemble of training matrices. Weighted maximum-margin matrix factorization is applied to each training matrix to obtain corresponding sub-rating matrix, the weights based on the weight matrix. The sub-rating matrices are combined to obtain an approximate rating matrix that can be used to recommend items to users based on the rank ordering of the corresponding matrix elements.
    • 本发明的实施例涉及用于确定评级矩阵中的未知数的方法和系统。 在一个实施例中,一种方法包括形成评级矩阵,其中每个矩阵元素对应于与项目相关联的已知有利用户评级或与项目相关联的未知用户评级。 该方法包括确定权重矩阵,其被配置为向每个未知矩阵元素分配权重值,以及对该等级矩阵进行采样以生成训练矩阵的集合。 加权最大边缘矩阵因子分解被应用于每个训练矩阵以获得相应的次级矩阵,权重基于权重矩阵。 将子评级矩阵组合以获得可以用于基于相应矩阵元素的秩排序向用户推荐项目的近似等级矩阵。