会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Method of making an asymmetrical IGFET with a silicide contact on the
drain without a silicide contact on the source
    • 在漏极上制造具有硅化物接触的不对称IGFET的方法,而不在源极上具有硅化物接触
    • US6004849A
    • 1999-12-21
    • US911745
    • 1997-08-15
    • Mark I. GardnerDaniel KadoshMichael Duane
    • Mark I. GardnerDaniel KadoshMichael Duane
    • H01L21/28H01L21/336H01L29/78H01L21/265
    • H01L29/66659H01L21/28114H01L29/665H01L29/7835
    • A method of making an asymmetrical IGFET is disclosed. The method includes providing a semiconductor substrate with an active region, wherein the active region includes a source region and a drain region, forming a gate insulator on the active region, forming a gate on the gate insulator and over the active region, implanting arsenic into the active region to provide a greater concentration of arsenic in the source region than in the drain region, growing an oxide layer over the active region, wherein the oxide layer has a greater thickness over the source region than over the drain region due to the greater concentration of arsenic in the source region than in the drain region, forming a source in the source region and a drain in the drain region, depositing a refractory metal over the gate, the source, the drain, and the oxide layer, and reacting the refractory metal with the drain without reacting the refractory metal with the source, thereby forming a silicide contact on the drain without forming a silicide contact on the source. Advantageously, the IGFET has low source-drain resistance, shallow channel junctions, and an LDD that reduces hot carrier effects.
    • 公开了制造不对称IGFET的方法。 该方法包括提供具有有源区的半导体衬底,其中有源区包括源极区和漏极区,在有源区上形成栅极绝缘体,在栅极绝缘体上并在有源区上方形成栅极,将砷注入 所述有源区域在所述源极区域中提供比在所述源极区域中更大的砷浓度,在所述有源区域上生长氧化物层,其中所述氧化物层在所述源极区域上比在所述漏极区域上的厚度大于所述漏极区域上的厚度 在源极区域中的砷浓度比漏极区域中的砷浓度高,在源极区域形成源极,在漏极区域形成漏极,在栅极,源极,漏极和氧化物层上沉积难熔金属,并使 具有漏极的难熔金属,而不使难熔金属与源极反应,从而在漏极上形成硅化物接触,而不在源上形成硅化物接触。 有利地,IGFET具有低源极 - 漏极电阻,浅沟道结和降低热载流子效应的LDD。
    • 4. 发明授权
    • Method of making an IGFET with a non-uniform lateral doping profile in
the channel region
    • 在通道区域中制造具有不均匀横向掺杂分布的IGFET的方法
    • US6027978A
    • 2000-02-22
    • US787036
    • 1997-01-28
    • Mark I. GardnerMichael DuaneDaniel Kadosh
    • Mark I. GardnerMichael DuaneDaniel Kadosh
    • H01L21/8234H01L29/10H01L21/336
    • H01L29/1045H01L21/823412
    • A method of making an IGFET with a selectively doped channel region is disclosed. The method includes providing a semiconductor substrate with a device region, forming a gate over the device region, forming a masking layer that partially covers the gate and the device region, implanting a dopant into portions of the gate and the device region outside the gate that are not covered by the masking layer, transferring the dopant through the uncovered portion of the gate into a portion of an underlying channel region in the device region, thereby providing the channel region with a non-uniform lateral doping profile and adjusting a threshold voltage, and forming a source and a drain in the device region. The dopant can be implanted through the portion of the gate into the portion of the channel region, or alternatively, the dopant can be diffused from the portion of the gate into the portion of the channel region. In addition, the dopant can be the same conductivity type as the channel region, thereby increasing the dopant concentration of the portion of the channel region and adjusting the threshold voltage away from zero, or the dopant can be opposite conductivity type as the channel region, thereby decreasing the dopant concentration of the portion of the channel region and adjusting the threshold voltage towards zero. Preferably, the gate is polysilicon and the masking layer is photoresist. Advantageously, the invention is well-suited for adjusting the threshold voltage, and therefore the drive current, leakage current and speed, of selected IGFETs, so that the fastest IGFETs with the highest leakage currents can be placed in critical speed paths such as common lines in SRAM arrays.
    • 公开了一种制造具有选择性掺杂沟道区域的IGFET的方法。 该方法包括提供具有器件区域的半导体衬底,在器件区域上形成栅极,形成部分地覆盖栅极和器件区域的掩模层,将掺杂剂注入到栅极外部的栅极和器件区域的部分, 不被掩蔽层覆盖,将掺杂剂通过栅极的未覆盖部分转移到器件区域中的下游沟道区域的一部分中,从而为沟道区域提供非均匀的横向掺杂分布并调整阈值电压, 以及在器件区域中形成源极和漏极。 掺杂剂可以通过栅极的一部分注入到沟道区的部分中,或者,掺杂剂可以从栅极的一部分扩散到沟道区的部分。 此外,掺杂剂可以是与沟道区相同的导电类型,从而增加沟道区的一部分的掺杂浓度,并将阈值电压调至零,或掺杂剂可以与沟道区相反的导电类型, 从而降低沟道区的部分的掺杂剂浓度并将阈值电压调至零。 优选地,栅极是多晶硅,掩模层是光致抗蚀剂。 有利地,本发明非常适合于调整所选IGFET的阈值电压,因此调节驱动电流,泄漏电流和速度,使得具有最高漏电流的最快的IGFET可被放置在诸如公用线路的临界速度路径 在SRAM阵列中。
    • 5. 发明授权
    • Integrated circuit including an oxide-isolated localized substrate and a
standard silicon substrate and fabrication method
    • 集成电路包括氧化物隔离的局部衬底和标准硅衬底及其制造方法
    • US5898189A
    • 1999-04-27
    • US905614
    • 1997-08-04
    • Mark I. GardnerDaniel KadoshMichael Duane
    • Mark I. GardnerDaniel KadoshMichael Duane
    • H01L21/822H01L27/06H01L27/092H01L29/76H01L21/263H01L29/04
    • H01L27/0922H01L21/8221H01L27/0688
    • A multi-dimensional transistor structure is fabricated which includes a base transistor substrate upon which transistors are formed. An elevated substrate is formed overlying the base transistor and having an oxide isolation formed in localized regions beneath the elevated substrate but overlying the base transistor substrate. A plurality of transistors are formed on a substrate wafer to form a base-level transistor formation. An intralevel dielectric (ILD) layer is deposited overlying the base-level transistor formation. Overlying the ILD layer, a "sandwich" structure is formed with the deposition of a first polysilicon layer, deposition of an oxide isolation layer, and deposition of a second polysilicon layer. The median oxide isolation layer is patterned and etched according to a localized oxide isolation mask in a configuration determined by the position of transistors in the base-level transistor formation and by the planned position of transistors, that are not yet formed, in an overlying elevated substrate level. The median oxide isolation layer is patterned and etched in a configuration so that isolation is achieved in a predetermined manner, for example, on an individual transistor basis, a transistor group basis, or the like. The resulting electronic integrated circuit structure is used for high speed circuit applications due to high packing densities and small distances between devices.
    • 制造了多维晶体管结构,其包括形成晶体管的基极晶体管基板。 形成了一个升高的衬底,覆盖着基极晶体管,并且在升高的衬底下方的局部区域中形成氧化物隔离层,但覆盖在基极晶体管衬底上。 在衬底晶片上形成多个晶体管,以形成基极晶体管结构。 层叠电介质(ILD)层沉积在基极晶体管结构之上。 覆盖ILD层,通过第一多晶硅层的沉积,氧化物隔离层的沉积和第二多晶硅层的沉积形成“三明治”结构。 根据局部氧化物隔离掩模对中间氧化物隔离层进行构图和蚀刻,该隔离掩模的形状由基极晶体管形成中的晶体管的位置和尚未形成的晶体管的预定位置确定 底物水平。 对中间氧化物隔离层进行图案化和蚀刻,以使得以预定的方式实现隔离,例如基于单个晶体管,基于晶体管组等。 所得的电子集成电路结构由于高封装密度和器件之间的距离小而用于高速电路应用。
    • 7. 发明授权
    • Ultra short transistor fabrication method
    • 超短晶体管制造方法
    • US6008096A
    • 1999-12-28
    • US790516
    • 1997-01-29
    • Mark I. GardnerMichael DuaneDaniel Kadosh
    • Mark I. GardnerMichael DuaneDaniel Kadosh
    • H01L21/225H01L21/265H01L21/28H01L21/336H01L21/8234
    • H01L29/66477H01L21/2256H01L21/2652H01L21/28141H01L21/823437H01L29/66545
    • A semiconductor process in which the transistor channel is defined by opposing sidewalls of a pair of masking structures formed on an upper surface of a semiconductor substrate. The spacing between the opposed sidewalls is defined by the thickness of the spacer structure formed between the sidewalls. The thickness of the spacer structure is preferably in the range of approximately 0.04 microns. A masking layer is formed on an upper surface of a semiconductor substrate. The masking layer includes first and second masking structures and a channel trench material. Opposing sidewalls of the first and second masking structures are laterally displaced by a channel displacement. The opposing sidewalls together with an upper surface of the semiconductor substrate define a channel trench. The channel trench is displaced above and aligned with a channel region of the semiconductor substrate. The channel trench material fills the channel trench. A mean projected path characteristic of the channel trench material is less than a mean projected path characteristic of the first and second masking structures. A source/drain impurity distribution is implanted into and through the masking layer to selectively introduce a source/drain impurity distribution into a source/drain region of the semiconductor substrate. The source/drain regions of the semiconductor substrate are laterally displaced on either side of the channel region. The channel trench material is then removed and a gate dielectric layer is formed on the floor of the channel trench. Thereafter, the channel trench is filled with a conductive material to form a conductive gate on the gate dielectric.
    • 一种半导体工艺,其中晶体管沟道由形成在半导体衬底的上表面上的一对掩模结构的相对侧壁限定。 相对侧壁之间的间隔由形成在侧壁之间的间隔结构的厚度限定。 间隔物结构的厚度优选在约0.04微米的范围内。 掩模层形成在半导体衬底的上表面上。 掩模层包括第一和第二掩模结构和通道沟槽材料。 第一和第二掩蔽结构的相对侧壁被通道位移横向移位。 相对的侧壁与半导体衬底的上表面一起形成通道沟槽。 沟道沟槽位于半导体衬底的沟道区上方并与之对齐。 通道沟槽材料填充沟槽。 通道沟槽材料的平均投影路径特性小于第一和第二掩模结构的平均投影路径特性。 源极/漏极杂质分布被注入并穿过掩模层,以选择性地将源极/漏极杂质分布引入到半导体衬底的源极/漏极区域中。 半导体衬底的源极/漏极区域在沟道区域的任一侧上被横向移位。 然后去除沟道沟槽材料,并且在沟道沟槽的底板上形成栅极电介质层。 此后,沟道沟槽填充有导电材料,以在栅极电介质上形成导电栅极。
    • 9. 发明授权
    • Elevated transistor fabrication technique
    • 高架晶体管制造技术
    • US06420730B1
    • 2002-07-16
    • US09591871
    • 2000-06-12
    • Mark I. GardnerDaniel KadoshMichael Duane
    • Mark I. GardnerDaniel KadoshMichael Duane
    • H01L2976
    • H01L27/0688H01L21/8221
    • A second transistor is formed a spaced distance above a first transistor. An interlevel dielectric is first deposited upon the upper surface of the first semiconductor substrate and the first transistor. A second semiconductor substrate, preferably comprising polysilicon, is then formed into the interlevel dielectric. A second transistor is then formed on the upper surface of the second semiconductor substrate. The second transistor is a spaced distance above the first transistor. The two transistors are a lateral distance apart which is smaller than the distance that can be achieved by conventional fabrication of transistors on the upper surface of the wafer. Transistors are more closely packed which results in an increase in the number of devices produced per wafer.
    • 在第一晶体管之上形成间隔距离的第二晶体管。 首先在第一半导体衬底和第一晶体管的上表面上沉积层间电介质。 然后,优选地包括多晶硅的第二半导体衬底形成层间电介质。 然后在第二半导体衬底的上表面上形成第二晶体管。 第二晶体管是在第一晶体管之上的间隔距离。 两个晶体管是横向距离,其小于通过晶片的上表面上的晶体管的常规制造可以实现的距离。 晶体管更紧密地封装,这导致每个晶片产生的器件数量的增加。
    • 10. 发明授权
    • Asymmetrical transistor structure
    • 不对称晶体管结构
    • US6104064A
    • 2000-08-15
    • US306508
    • 1999-05-06
    • Daniel KadoshMark I. GardnerMichael DuaneJon D. CheekFred N. HauseRobert DawsonBrad T. Moore
    • Daniel KadoshMark I. GardnerMichael DuaneJon D. CheekFred N. HauseRobert DawsonBrad T. Moore
    • H01L21/28H01L21/336H01L29/78H01L29/76
    • H01L21/28211H01L21/28176H01L29/66659H01L29/7835
    • Various processes are provided for producing a p-channel and/or n-channel transistor. The present processes are thereby applicable to NMOS, PMOS or CMOS integrated circuits, any of which derive a benefit from having an asymmetrical LDD structure. The asymmetrical structure can be produced on a p-channel or n-channel transistor in various ways. According, the present process employs various techniques to form an asymmetrical transistor. The various techniques employ processing steps which vary depending upon the LDD result desired. First, the LDD implant can be performed only in the drain-side of the channel, or in the drain-side as well as the source-side. Second, the gate conductor sidewall surface adjacent the drain can be made thicker than the sidewall surface adjacent the source. Thickening of the drain-side sidewall spacer can be achieved either by depositing oxide upon a nitride-bearing film, or by growing additional oxide upon an exposed silicon surface having the source-side sidewall protected from growth. Third, the drain-side can be enhanced relative to the source-side by using an LTA implant. There may be numerous other modifications and alternative processing steps, all of which are described herein. Regardless of the sequence chosen, a barrier implant may be employed to prevent deleterious ingress of p-type implant species into the channel region. The present fabrication sequence reduces source-side resistance to enhance drive current--a desirable outcome for high speed circuits.
    • 提供了用于产生p沟道和/或n沟道晶体管的各种工艺。 因此,本发明的方法可应用于NMOS,PMOS或CMOS集成电路,其中任何一种从具有不对称的LDD结构中获益。 可以以各种方式在p沟道或n沟道晶体管上产生非对称结构。 据此,本方法采用各种技术形成不对称晶体管。 各种技术采用根据​​所需LDD结果而变化的处理步骤。 首先,LDD注入仅能够在沟道的漏极侧,或者在漏极侧以及源极侧进行。 第二,与漏极相邻的栅极导体侧壁表面可以制成比邻近源极的侧壁表面更厚。 漏极侧壁间隔物的增厚可以通过在氮化物承载膜上沉积氧化物,或通过在具有源极侧壁保护生长的暴露的硅表面上生长另外的氧化物来实现。 第三,可以通过使用LTA植入物相对于源极侧的漏极侧增强。 可以存在许多其它修改和替代的处理步骤,其全部在此描述。 不管选择的顺序如何,可以使用阻挡植入物来防止p型植入物质进入通道区域的有害进入。 本制造顺序降低了源极电阻以增强驱动电流 - 高速电路的期望结果。