会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Controlled load limited switch dynamic logic circuitry
    • 受控负载限制开关动态逻辑电路
    • US07129754B2
    • 2006-10-31
    • US11082805
    • 2005-03-17
    • Hung C. NgoJayakumaran SivagnanameKevin J. NowkaRobert K. Montoye
    • Hung C. NgoJayakumaran SivagnanameKevin J. NowkaRobert K. Montoye
    • H03K19/096
    • H03K19/0963
    • An LSDL circuit replaces the normal clock control of the pre-charge device for the dynamic node with a control signal that is logic zero whenever the circuit is in an active mode and is a logic one when the circuit is in standby mode. The pre-charge device holds the dynamic node at a pre-charged logic one state independent of the clock. During the logic one evaluate time of the clock, the logic tree determines the asserted state of the dynamic node. During the evaluate time, the asserted state is latched by the static LSDL section. The dynamic node then re-charges to the pre-charge state. Since the pre-charge device is not de-gated during the evaluate time, the dynamic node cannot be inadvertently discharged by noise causing an error. Likewise, since the clock does not couple to the pre-charge device a load is removed from the clock tree lowering clock power.
    • 只要电路处于活动模式,LSDL电路用动态节点的预充电装置的正常时钟控制替代逻辑零的控制信号,并且当电路处于待机模式时,逻辑为逻辑1。 预充电装置将动态节点保持在与时钟无关的预充电逻辑1状态。 在逻辑1期间评估时钟的时间,逻辑树确定动态节点的被断言状态。 在评估时间期间,断言状态由静态LSDL部分锁存。 然后动态节点重新充电到预充电状态。 由于在评估时间期间预充电装置没有被去门,所以动态节点不能被无意中的噪声放电,导致错误。 类似地,由于时钟不耦合到预充电装置,所以从时钟树中降低时钟功率的负载被去除。
    • 5. 发明授权
    • Buffer/driver circuits
    • 缓冲/驱动电路
    • US06975134B2
    • 2005-12-13
    • US10821048
    • 2004-04-08
    • Jente B. KuangHung C. NgoKevin J. Nowka
    • Jente B. KuangHung C. NgoKevin J. Nowka
    • H03K17/16H03K19/00H03K19/003H03K19/017
    • H03K19/00361H03K19/0016H03K19/01721
    • A buffer/driver having large output devices for driving multiple loads is configured with three parallel paths. The first logic path is made of small devices and is configured to provide the logic function of the buffer/driver without the ability to drive large loads. Second and third logic paths have the logic function of the first logic path up to the last inverting stage. The last inverting stage in each path is a single device for driving the logic states of the buffer output. The second and third logic paths have power-gating that allows the input to the pull-up and pull-down devices to float removing gate-leakage voltage stress. When the second and third logic paths are power-gated, the first logic path provides a keeper function to hold the logic state of the buffer output. The buffer/driver may be an inverter, non-inverter, or provide a multiple input logic function.
    • 具有用于驱动多个负载的大输出装置的缓冲器/驱动器配置有三个并行路径。 第一个逻辑路径由小型设备组成,并配置为提供缓冲器/驱动器的逻辑功能,而无需驱动大负载。 第二和第三逻辑路径具有直到上一个反相级的第一逻辑路径的逻辑功能。 每个路径中的最后一个反相级是用于驱动缓冲区输出逻辑状态的单个器件。 第二和第三逻辑路径具有电源门控,允许上拉和下拉器件的输入漂移去除栅极泄漏电压应力。 当第二和第三逻辑路径是电源门控时,第一逻辑路径提供保持器功能以保持缓冲器输出的逻辑状态。 缓冲器/驱动器可以是逆变器,非逆变器,或提供多输入逻辑功能。
    • 6. 发明授权
    • Dual-gate dynamic logic circuit with pre-charge keeper
    • 双栅极动态逻辑电路,带有预充电保护器
    • US07298176B2
    • 2007-11-20
    • US11204401
    • 2005-08-16
    • Hung C. NgoChing-Te ChuangKeunwoo KimJente B. KuangKevin J. Nowka
    • Hung C. NgoChing-Te ChuangKeunwoo KimJente B. KuangKevin J. Nowka
    • H03K19/20
    • H03K19/0963
    • A dynamic logic gate has an asymmetrical dual-gate PFET device for charging a dynamic node during a pre-charge phase of a clock. A logic tree evaluates the dynamic node during an evaluate phase of the clock. The front gate of the asymmetrical dual-gate PFET device is coupled to the clock signal and the back gate is coupled to the ground potential of the power supply. When the clock is a logic zero both the front gate and the back gate are biased ON and the dynamic node charges with maximum current. The clock signal transitions to a logic one during the evaluation phase of the clock turning OFF the front gate. The back gate remains ON and the asymmetrical dual-gate PFET device operates as a keeper device with a current level sufficient to counter leakage on the dynamic node.
    • 动态逻辑门具有非对称双栅极PFET器件,用于在时钟的预充电阶段期间对动态节点进行充电。 逻辑树在时钟的评估阶段评估动态节点。 非对称双栅极PFET器件的前栅极耦合到时钟信号,而后栅极耦合到电源的地电位。 当时钟为逻辑0时,前门和后门都被偏置为ON,动态节点以最大电流充电。 在时钟关断前门的评估阶段,时钟信号转变为逻辑1。 背栅保持接通,并且非对称双栅极PFET器件作为具有足以抵抗动态节点上的泄漏的电流水平的保持器器件工作。
    • 7. 发明授权
    • Dynamic leakage control circuit
    • 动态泄漏控制电路
    • US07266707B2
    • 2007-09-04
    • US10942419
    • 2004-09-16
    • Hung C. NgoJente B. KuangKevin J. NowkaRajiv V. Joshi
    • Hung C. NgoJente B. KuangKevin J. NowkaRajiv V. Joshi
    • G06F1/00
    • G06F1/3228
    • A low power consumption pipeline circuit architecture has power partitioned pipeline stages. The first pipeline stage is non-power-gated for fast response in processing input data after receipt of a valid data signal. A power-gated second pipeline stage has two power-gated modes. Normally the power rail in the power-gated second pipeline stage is charged to a first voltage potential of a pipeline power supply. In the first power gated mode, the power rail is charged to a threshold voltage below the first voltage potential to reduce leakage. In the second power gated mode, the power rail is decoupled from the first voltage potential. A power-gated third pipeline stage has its power rail either coupled to the first voltage potential or power-gated where its power rail is decoupled from the first voltage potential. The power rail of the second power-gated pipeline stage charges to the first voltage potential before the third power-gated pipeline stage.
    • 低功耗流水线电路架构具有电源分配管线级。 第一个流水线阶段是非功率门控,用于在接收到有效的数据信号后处理输入数据的快速响应。 电源门控第二管道级具有两个电源门控模式。 通常,电源门控第二管线级中的电源轨被充电到管线电源的第一电压电位。 在第一电源门控模式中,电力轨被充电到低于第一电压电位的阈值电压以减少泄漏。 在第二电源门控模式下,电源轨与第一电压电位分离。 电源门控第三管线级具有其电源轨或者耦合到第一电压电势或电源门控,其电源轨与第一电压电势分离。 第二电力门控管道阶段的电力轨道在第三电力门控管道阶段之前充电到第一电压电位。
    • 9. 发明授权
    • Test structure for characterizing multi-port static random access memory and register file arrays
    • 用于表征多端口静态随机存取存储器和寄存器文件阵列的测试结构
    • US08555119B2
    • 2013-10-08
    • US13459932
    • 2012-04-30
    • Leland ChangJente B. KuangRobert K. MontoyeHung C. NgoKevin J. Nowka
    • Leland ChangJente B. KuangRobert K. MontoyeHung C. NgoKevin J. Nowka
    • G11C29/00
    • G11C8/16G11C29/32G11C29/50G11C29/50012
    • A test structure for characterizing a production static random access memory (SRAM) array. The test structure includes a characterization circuit having multiple memory cell columns connected in series to form a ring configuration. The characterization circuit is fabricated on a wafer substrate in common with and proximate to a production SRAM array. The characterization circuit preferably includes SRAM cells having a circuit topology substantially identical to the circuit topology of memory cells within the production SRAM array. In one embodiment, the test structure is utilized for characterizing a multi-port memory array and includes multiple memory cell columns connected in series to form a ring oscillator characterization circuit. Each cell column in the characterization circuit includes multiple SRAM cells each having a latching node and multiple data path access nodes. Selection control circuitry selectively enables the multiple data path access nodes for the SRAM cells within the characterization circuit.
    • 用于表征生产静态随机存取存储器(SRAM)阵列的测试结构。 测试结构包括具有串联连接的多个存储单元列的表征电路,以形成环形结构。 表征电路在与生产SRAM阵列相同并且靠近生产SRAM阵列的晶片衬底上制造。 表征电路优选地包括具有与生产SRAM阵列内的存储器单元的电路拓扑基本相同的电路拓扑的SRAM单元。 在一个实施例中,测试结构用于表征多端口存储器阵列,并且包括串联连接的多个存储单元列,以形成环形振荡器表征电路。 表征电路中的每个单元列包括多个具有锁存节点和多个数据路径接入节点的SRAM单元。 选择控制电路选择性地启用表征电路内的SRAM单元的多个数据路径接入节点。
    • 10. 发明授权
    • Test structure for characterizing multi-port static random access memory and register file arrays
    • 用于表征多端口静态随机存取存储器和寄存器文件阵列的测试结构
    • US08261138B2
    • 2012-09-04
    • US11552158
    • 2006-10-24
    • Leland ChangJente B. KuangRobert K. MontoyeHung C. NgoKevin J. Nowka
    • Leland ChangJente B. KuangRobert K. MontoyeHung C. NgoKevin J. Nowka
    • G11C29/00
    • G11C8/16G11C29/32G11C29/50G11C29/50012
    • A test structure for characterizing a production static random access memory (SRAM) array. The test structure includes a characterization circuit having multiple memory cell columns connected in series to form a ring configuration. The characterization circuit is fabricated on a wafer substrate in common with and proximate to a production SRAM array. The characterization circuit preferably includes SRAM cells having a circuit topology substantially identical to the circuit topology of memory cells within the production SRAM array. In one embodiment, the test structure is utilized for characterizing a multi-port memory array and includes multiple memory cell columns connected in series to form a ring oscillator characterization circuit. Each cell column in the characterization circuit includes multiple SRAM cells each having a latching node and multiple data path access nodes. Selection control circuitry selectively enables the multiple data path access nodes for the SRAM cells within the characterization circuit.
    • 用于表征生产静态随机存取存储器(SRAM)阵列的测试结构。 测试结构包括具有串联连接的多个存储单元列的表征电路,以形成环形结构。 表征电路在与生产SRAM阵列相同并且靠近生产SRAM阵列的晶片衬底上制造。 表征电路优选地包括具有与生产SRAM阵列内的存储器单元的电路拓扑基本相同的电路拓扑的SRAM单元。 在一个实施例中,测试结构用于表征多端口存储器阵列,并且包括串联连接的多个存储单元列,以形成环形振荡器表征电路。 表征电路中的每个单元列包括多个具有锁存节点和多个数据路径接入节点的SRAM单元。 选择控制电路选择性地启用表征电路内的SRAM单元的多个数据路径接入节点。