会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Epitaxial growth of group III nitrides on silicon substrates via a reflective lattice-matched zirconium diboride buffer layer
    • 通过反射晶格匹配的二硼化硼缓冲层在硅衬底上外延生长III族氮化物
    • US07781356B2
    • 2010-08-24
    • US10545484
    • 2004-02-12
    • John KouvetakisIgnatius S. T. TsongJohn TolleRadek Roucka
    • John KouvetakisIgnatius S. T. TsongJohn TolleRadek Roucka
    • C04B35/58C30B25/00
    • C30B25/02C30B29/10H01L21/0237H01L21/02439H01L21/02491H01L21/0254H01L21/0262H01L21/02631H01L33/007
    • A semiconductor structure and fabrication method is provided for integrating wide bandgap nitrides with silicon. The structure includes a substrate, a single crystal buffer layer formed by epitaxy over the substrate and a group III nitride film formed by epitaxy over the buffer layer. The buffer layer is reflective and conductive. The buffer layer may comprise B an element selected from the group consisting of Zr, Hf, Al. For example, the buffer layer may comprise ZrB2, AlB2 or HfB2. The buffer layer provides a lattice match with the group III nitride layer. The substrate can comprise silicon, silicon carbide (SiC), gallium arsenide (GaAs), sapphire or Al2O3. The group III nitride material includes GaN, AlN, InN, AlGaN, InGaN or AlInGaN and can form an active region. In a presently preferred embodiment, the buffer layer is ZrB2 and the substrate is Si(111) or Si(100) and the group III nitride layer comprises GaN. The ZrB2 buffer layer provides a reflective and conductive buffer layer that has a small lattice mismatch with GaN. The semiconductor structure can be used to fabricate active microelectronic devices, such as transistors including field effect transistors and bipolar transistors. The semiconductor structure also can be used to fabricate optoelectronic devices, such as laser diodes and light emitting diodes.
    • 提供了一种用于将宽带隙氮化物与硅结合的半导体结构和制造方法。 该结构包括衬底,通过衬底上的外延形成的单晶缓冲层和通过缓冲层上的外延形成的III族氮化物膜。 缓冲层是反射和导电的。 缓冲层可以包含选自由Zr,Hf,Al组成的组的元素。 例如,缓冲层可以包括ZrB2,AlB2或HfB2。 缓冲层提供与III族氮化物层的晶格匹配。 衬底可以包括硅,碳化硅(SiC),砷化镓(GaAs),蓝宝石或Al2O3。 III族氮化物材料包括GaN,AlN,InN,AlGaN,InGaN或AlInGaN,并且可以形成有源区。 在目前优选的实施方案中,缓冲层是ZrB 2,衬底是Si(111)或Si(100),III族氮化物层包括GaN。 ZrB2缓冲层提供与GaN具有小的晶格失配的反射和导电缓冲层。 半导体结构可用于制造有源微电子器件,例如包括场效应晶体管和双极晶体管的晶体管。 该半导体结构也可用于制造诸如激光二极管和发光二极管之类的光电器件。
    • 5. 发明授权
    • Low temperature epitaxial growth of quaternary wide bandgap semiconductors
    • 四元宽带隙半导体的低温外延生长
    • US06911084B2
    • 2005-06-28
    • US09981024
    • 2001-10-16
    • John KouvetakisIgnatius S. T. TsongRadek RouckaJohn Tolle
    • John KouvetakisIgnatius S. T. TsongRadek RouckaJohn Tolle
    • C30B25/02H01L21/205H01L33/26H01S5/30H01S5/32C30B25/08
    • H01L33/26C30B25/02C30B29/52H01L21/02378H01L21/02381H01L21/02447H01L21/02458H01L21/02529H01L21/0254H01L21/0262H01L21/02631H01S5/30H01S5/3027H01S5/32H01S2304/02
    • A method of growing quaternary epitaxial films having the formula YCZN wherein Y is a Group IV element and Z is a Group III element at temperatures in the range 550-750° C. is provided. In the method, a gaseous flux of precursor H3YCN and a vapor flux of Z atoms are introduced into a gas-source molecular beam epitaxial (GSMBE) chamber where they combine to form thin film of YCZN on the substrate. Preferred substrates are silicon, silicon carbide and AlN/silicon structures. Epitaxial thin film SiCAlN and GeCAlN are provided. Bandgap engineering may be achieved by the method by adjusting reaction parameters of the GSMBE process and the relative concentrations of the constituents of the quaternary alloy films. Semiconductor devices produced by the present method have bandgaps from about 2 eV to about 6 eV and exhibit a spectral range from visible to ultraviolet which makes them useful for a variety of optoelectronic and microelectronic applications. Large-area substrates for growth of conventional Group III nitrides and compounds are produced by SiCAlN deposited on large-diameter silicon wafers. The quaternary compounds, especially the boron containing compounds, exhibit extreme hardness. These quaternary compounds are radiation resistant and may be used in space exploration.
    • 提供了在550-750℃的温度下生长具有式YCZN的四元外延膜的方法,其中Y是IV族元素,Z是III族元素。 在该方法中,将前体H 3 YCN的气体流量和Z原子的蒸气通量引入气体分子束外延(GSMBE)室中,在其中它们结合形成YCZN的薄膜, 底物。 优选的衬底是硅,碳化硅和AlN /硅结构。 提供外延薄膜SiCA1N和GeCA1N。 通过调整GSMBE工艺的反应参数和四元合金薄膜成分的相对浓度,可以通过该方法实现带隙工程。 通过本方法制造的半导体器件具有约2eV至约6eV的带隙,并且具有从可见到紫外线的光谱范围,使得它们可用于各种光电子和微电子应用。 用于生长常规III族氮化物和化合物的大面积衬底由沉积在大直径硅晶片上的SiCAlN产生。 四元化合物,特别是含硼化合物,具有极高的硬度。 这些四元化合物具有耐辐射性,可用于太空探索。
    • 7. 发明申请
    • Method for Growing Si-Ge Semiconductor Materials and Devices on Substrates
    • 在基板上生长Si-Ge半导体材料和器件的方法
    • US20080113186A1
    • 2008-05-15
    • US11662669
    • 2005-04-08
    • John KouvetakisIgnatius S.T. TsongChangwu HuJohn Tolle
    • John KouvetakisIgnatius S.T. TsongChangwu HuJohn Tolle
    • H01L21/20C30B25/02B32B33/00C01B33/06
    • B32B15/02B82Y10/00C30B23/002C30B23/02C30B25/02C30B29/52H01L21/02381H01L21/02532H01L21/02573H01L21/0262H01L21/02636Y10T428/265Y10T428/31663
    • A method is provided for growing Si—Ge materials on Si(100) with Ge-rich contents (Ge>50 at. %) and precise stoichiometries SiGe, SiGe2, SiGe3 and SiGe4. New hydrides with direct Si—Ge bonds derived from the family of compounds (H3Ge)xSiH4-x (x=1-4) are used to grow uniform, relayed and highly planar films with low defect densities at unprecedented low temperatures between about 300-450° C., circumventing entirely the need of thick compositionally graded buffer layer and lift off technologies. At about 500-700° C., SiGex quantum dots are grown with narrow size distribution, defect-free microstructures and highly homogeneous elemental content at the atomic level. The method provides precise control of morphology, composition, structure and strain via the incorporation of the entire Si/Ge framework of the gaseous precursor into the film. The grown materials possess the required morphological and microstructural characteristics for applications in high frequency electronic and optical systems, as well as templates and buffer layers for development of commercial devices based on high mobility Si and Ge channels.
    • 提供了一种用于在具有富锗含量(Ge> 50at。%)和精确化学计量的Si(100)上生长Si-Ge材料的方法,SiGe,SiGe 2 Si,SiGe 3, SUB>和SiGe 4。 具有源自化合物族(H 3 3 Ge)的直接Si-Ge键的新型氢化物x Si x 4 x x(x = 1- 4)用于在约300-450℃之间的前所未有的低温下生长具有低缺陷密度的均匀的,中继的和高度平坦的膜,完全避免了厚的成分梯度缓冲层和剥离技术的需要。 在约500-700℃下,以较小的分布,无缺陷的微结构和原子水平的高均匀元素含量生长SiGe x X量子点。 该方法通过将气态前体的整个Si / Ge骨架结合到膜中来提供形态,组成,结构和应变的精确控制。 生长的材料具有在高频电子和光学系统中的应用所需的形态和微结构特征,以及用于基于高迁移率Si和Ge通道开发商业设备的模板和缓冲层。
    • 10. 发明申请
    • Hydride Compounds with Silicon and Germanium Core Atoms and method of Synthesizing Same
    • 具有硅和锗核原子的氢化物化合物及其合成方法
    • US20120020864A1
    • 2012-01-26
    • US13180961
    • 2011-07-12
    • John KouvetakisCole J. Ritter, IIIJohn Tolle
    • John KouvetakisCole J. Ritter, IIIJohn Tolle
    • C01B33/04
    • C01B33/04C01B6/06Y10S148/058
    • A method is provided for synthesizing silicon-germanium hydride compounds of the formula (H3Ge)4-xSiHx, wherein x=0, 1, 2 or 3. The method includes combining a silane triflate with a compound having a GeH3 ligand under conditions whereby the silicon-germanium hydride is formed. The compound having the GeH3 ligand is selected from the group consisting of KGeH3, NaGeH3 and MR3GeH3, wherein M is a Group IV element and R is an organic ligand. The silane triflate can be HxSi(OSO2CF3)4-x or HxSi(OSO2C4F9)4-x. The method can be used to synthesize trisilane, (H3Si)2SiH2, and the iso-tetrasilane analog, (H3Si)3SiH, by combining a silane triflate with a compound comprising a SiH3 ligand under conditions whereby the silicon hydride is formed. The silane triflate can include HxSi(OSO2CF3)4-x or HxSi(OSO2C4F9)4-x wherein x=1 or 2. A method for synthesizing (H3Ge)2SiH2 includes combining H3GeSiH2(OSO2CF3) with KGeH3 under conditions whereby (H3Ge)2SiH2 is formed.
    • 提供了一种用于合成式(H3Ge)4-xSiHx的硅 - 锗化合物的方法,其中x = 0,1,2或3.该方法包括将硅烷三氟甲磺酸酯与具有GeH 3配位体的化合物组合, 形成硅 - 锗氢化物。 具有GeH 3配体的化合物选自KGeH 3,NaGeH 3和MR 3 GeH 3,其中M是IV族元素,R是有机配体。 三氟甲磺酸硅烷可以是H x Si(OSO 2 CF 3)4-x或H x Si(OSO 2 C 4 F 9)4-x。 该方法可以通过在形成硅氢化氢的条件下将硅烷三氟甲磺酸酯与包含SiH 3配体的化合物组合来合成丙硅烷(H3Si)2 SiH 2和异四硅烷类似物(H3Si)3 SiH。 三氟甲磺酸硅烷可以包括H x Si(OSO 2 CF 3)4-x或H x Si(OSO 2 C 4 F 9)4-x,其中x = 1或2.合成(H3Ge)2 SiH 2的方法包括将H3GeSiH 2(OSO 2 CF 3)与KGeH 3组合, 形成了。