会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Waveguide-grating router with output tapers configured to provide a passband that is optimized for each channel individually
    • 具有输出锥度的波导光栅路由器被配置为提供针对每个通道单独优化的通带
    • US06735363B1
    • 2004-05-11
    • US10096124
    • 2002-03-08
    • Kenneth McGreerLiang ZhaoJane Lam
    • Kenneth McGreerLiang ZhaoJane Lam
    • G02B634
    • G02B6/12011
    • An optical integrated circuit (OIC) or optical apparatus upon which a waveguide-grating router (WGR) device is fashioned is provided, where the circuit is configured to optimize a passband for each channel transmitted on an output waveguide. The WGR has two or more waveguides of varying widths optically coupled to a slab waveguide. The widths can be configured to facilitate producing a substantially uniform frequency-limited bandwidth, a substantially uniform wavelength-limited bandwidth, a substantially uniform isolation value, and/or a substantially uniform value for insertion loss between the output waveguides, which in turn facilitates producing optical data communication devices with more consistent transmission parameters and higher quality. In addition to various widths, the shape of the delivering end of a slab waveguide can be fashioned to further improve the consistency and quality of such parameters.
    • 提供了一种在其上形成波导 - 光栅路由器(WGR)设备的光学集成电路(OIC)或光学设备,其中电路被配置为优化在输出波导上传输的每个通道的通带。 WGR具有光学耦合到平板波导的两个或更多个不同宽度的波导。 宽度可以被配置为有助于产生基本均匀的频率限制带宽,基本均匀的波长限制带宽,基本上均匀的隔离值,和/或输出波导之间的插入损耗的基本上均匀的值,这反过来有助于产生 光学数据通信设备具有更一致的传输参数和更高的质量。 除了各种宽度之外,可以形成平板波导的输送端的形状,以进一步提高这些参数的一致性和质量。
    • 4. 发明授权
    • Multi-band arrayed waveguide grating
    • 多波段阵列波导光栅
    • US06678446B1
    • 2004-01-13
    • US09970207
    • 2001-10-03
    • Kenneth McGreerJane Lam
    • Kenneth McGreerJane Lam
    • G02B634
    • G02B6/12016G02B6/12019
    • An arrayed waveguide grating router (AWGR) comprises sets of output waveguides for a number of bands. Angular separation of adjacent output waveguides is relatively small for adjacent output waveguides. within a band and significantly larger for adjacent output waveguides belonging to different bands. In specific embodiments the output waveguides are arranged into at least two bands, each band comprising at least two adjacent waveguides. Each band is used in conjunction with an input waveguide specific to the particular band. AWGRs according to the invention may be made so that the passbands from a plurality of output waveguides fall on a wavelength grid or a frequency grid. Dummy waveguides may be included for ease of fabrication.
    • 阵列波导光栅路由器(AWGR)包括用于多个频带的输出波导组。 相邻输出波导的角分离相对较小。 并且对于属于不同频带的相邻输出波导显着更大。 在具体实施例中,输出波导被布置成至少两个频带,每个频带包括至少两个相邻的波导。 每个频带与特定频带的输入波导结合使用。 可以进行根据本发明的AWGR,使得来自多个输出波导的通带落在波长网格或频率网格上。 可以包括虚拟波导以便于制造。
    • 5. 发明申请
    • Thermal control of optical components
    • 光学部件的热控制
    • US20060279734A1
    • 2006-12-14
    • US10760145
    • 2004-01-16
    • Ming YanAnthony TicknorCalvin HoHao XuJason WeaverThomas TarterJane Lam
    • Ming YanAnthony TicknorCalvin HoHao XuJason WeaverThomas TarterJane Lam
    • G01J3/28
    • G02B6/12026G01J3/0286G02B6/12011
    • A linearized thermal and optical model of an optical integrated circuit can be used to temperature-stabilize one or more optical elements of the circuit using active temperature regulation. To stabilize a single optical element, such as an arrayed waveguide grating (AWG), a temperature sensor and a heater can be provided proximate to the grating. Thermal and optical coefficients can be then used to select an appropriate temperature set-point for the temperature controller that receives readings from the sensor and determines the power dissipated in the heater. Multiple AWG's can be stabilized individually, using the same process and lumping cross-heating factors together with other environmental factors. Alternatively, multiple AWG's can be stabilized using fewer sensors than AWG's, by stabilizing one of the AWG's in the same manner as in the case of a single AWG, and determining power dissipated in the heaters of the remaining AWG's based on the linearized model.
    • 可以使用光学集成电路的线性化热和光学模型来使用主动温度调节来温度稳定电路的一个或多个光学元件。 为了稳定单个光学元件,例如阵列波导光栅(AWG),可以在光栅附近提供温度传感器和加热器。 然后可以使用热系数和光学系数为温度控制器选择适当的温度设定点,该温度控制器从传感器接收读数并确定加热器中消耗的功率。 多个AWG可以单独稳定,使用相同的过程并将交叉加热因子与其他环境因素结合在一起。 或者,通过使用比AWG更少的传感器,可以使用比AWG更少的传感器来稳定多个AWG,通过以与单个AWG相同的方式稳定AWG之一,并根据线性化模型确定剩余AWG的加热器中消耗的功率。
    • 6. 发明申请
    • THERMAL CONTROL OF OPTICAL COMPONENTS
    • 光学元件的热控制
    • US20090087138A1
    • 2009-04-02
    • US12241860
    • 2008-09-30
    • Ming YanAnthony J. TicknorCalvin HoHao XUJason WeaverThomas S. TarterJane Lam
    • Ming YanAnthony J. TicknorCalvin HoHao XUJason WeaverThomas S. TarterJane Lam
    • G02B6/12
    • G02B6/12026G01J3/0286G02B6/12011
    • A linearized thermal and optical model of an optical integrated circuit can be used to temperature-stabilize one or more optical elements of the circuit using active temperature regulation. To stabilize a single optical element, a temperature sensor and a heater can be provided proximate to the grating. Thermal and optical coefficients can be then used to select an appropriate temperature set-point for the temperature controller that receives readings from the sensor and determines the power dissipated in the heater. Multiple optical elements can be stabilized individually, using the same process and lumping cross-heating factors together with other environmental factors. Alternatively, multiple AWG's can be stabilized using fewer sensors than optical elements, by stabilizing one of the optical elements in the same manner as in the case of a single optical elements, and determining power dissipated in the heaters of the remaining optical elements based on the linearized model.
    • 可以使用光学集成电路的线性化热和光学模型来使用主动温度调节来温度稳定电路的一个或多个光学元件。 为了稳定单个光学元件,可以在光栅附近提供温度传感器和加热器。 然后可以使用热系数和光学系数为温度控制器选择适当的温度设定点,该温度控制器从传感器接收读数并确定加热器中消耗的功率。 多个光学元件可以单独稳定,使用相同的工艺并将交叉加热因子与其他环境因素结合在一起。 或者,通过以与单个光学元件的情况相同的方式来稳定光学元件之一,可以使用比光学元件少的传感器来稳定多个AWG,并且基于所述光学元件的剩余光学元件的加热器确定功率消耗 线性化模型。
    • 7. 发明授权
    • Thermal control of optical components
    • 光学部件的热控制
    • US07720328B2
    • 2010-05-18
    • US12241860
    • 2008-09-30
    • Ming YanAnthony J. TicknorCalvin HoHao XuJason WeaverThomas S. TarterJane Lam
    • Ming YanAnthony J. TicknorCalvin HoHao XuJason WeaverThomas S. TarterJane Lam
    • G02B6/12
    • G02B6/12026G01J3/0286G02B6/12011
    • A linearized thermal and optical model of an optical integrated circuit can be used to temperature-stabilize one or more optical elements of the circuit using active temperature regulation. To stabilize a single optical element, a temperature sensor and a heater can be provided proximate to the grating. Thermal and optical coefficients can be then used to select an appropriate temperature set-point for the temperature controller that receives readings from the sensor and determines the power dissipated in the heater. Multiple optical elements can be stabilized individually, using the same process and lumping cross-heating factors together with other environmental factors. Alternatively, multiple AWG's can be stabilized using fewer sensors than optical elements, by stabilizing one of the optical elements in the same manner as in the case of a single optical elements, and determining power dissipated in the heaters of the remaining optical elements based on the linearized model.
    • 可以使用光学集成电路的线性化热和光学模型来使用主动温度调节来温度稳定电路的一个或多个光学元件。 为了稳定单个光学元件,可以在光栅附近提供温度传感器和加热器。 然后可以使用热系数和光学系数为温度控制器选择适当的温度设定点,该温度控制器从传感器接收读数并确定加热器中消耗的功率。 多个光学元件可以单独稳定,使用相同的工艺并将交叉加热因子与其他环境因素结合在一起。 或者,通过以与单个光学元件的情况相同的方式来稳定光学元件之一,可以使用比光学元件少的传感器来稳定多个AWG,并且基于所述光学元件的剩余光学元件的加热器确定功率消耗 线性化模型。
    • 8. 发明授权
    • Thermal control of optical components
    • 光学部件的热控制
    • US07447393B2
    • 2008-11-04
    • US10760145
    • 2004-01-16
    • Ming YanAnthony J. TicknorCalvin HoHao XuJason WeaverThomas S. TarterJane Lam
    • Ming YanAnthony J. TicknorCalvin HoHao XuJason WeaverThomas S. TarterJane Lam
    • G02B6/12
    • G02B6/12026G01J3/0286G02B6/12011
    • A linearized thermal and optical model of an optical integrated circuit can be used to temperature-stabilize one or more optical elements of the circuit using active temperature regulation. To stabilize a single optical element, such as an arrayed waveguide grating (AWG), a temperature sensor and a heater can be provided proximate to the grating. Thermal and optical coefficients can be then used to select an appropriate temperature set-point for the temperature controller that receives readings from the sensor and determines the power dissipated in the heater. Multiple AWG's can be stabilized individually, using the same process and lumping cross-heating factors together with other environmental factors. Alternatively, multiple AWG's can be stabilized using fewer sensors than AWG's, by stabilizing one of the AWG's in the same manner as in the case of a single AWG, and determining power dissipated in the heaters of the remaining AWG's based on the linearized model.
    • 可以使用光学集成电路的线性化热和光学模型来使用主动温度调节来温度稳定电路的一个或多个光学元件。 为了稳定单个光学元件,例如阵列波导光栅(AWG),可以在光栅附近提供温度传感器和加热器。 然后可以使用热系数和光学系数为温度控制器选择适当的温度设定点,该温度控制器从传感器接收读数并确定加热器中消耗的功率。 多个AWG可以单独稳定,使用相同的过程并将交叉加热因子与其他环境因素结合在一起。 或者,通过使用比AWG更少的传感器,可以使用比AWG更少的传感器来稳定多个AWG,通过以与单个AWG相同的方式稳定AWG之一,并根据线性化模型确定剩余AWG的加热器中消耗的功率。