会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Hydrogen sulfide (H2S) detection using functionalized nanoparticles
    • 使用官能化纳米粒子的硫化氢(H2S)检测
    • US09052289B2
    • 2015-06-09
    • US12966451
    • 2010-12-13
    • Jimmy LawrenceRonald van HalJane Lam
    • Jimmy LawrenceRonald van HalJane Lam
    • G01N33/24G01N33/22G01N33/18G01N21/64G01N21/31G01N33/00C09K8/532
    • G01N21/643C09K8/532C09K2208/20G01N21/31G01N31/22G01N33/004G01N33/0044Y10T436/184
    • Methods and related apparatuses and mixtures are described for spectroscopic detection of hydrogen sulfide in a fluid, for example a formation fluid downhole. A reagent mixture is combined with the fluid. The reagent mixture includes metal ions for reacting with hydrogen sulfide forming a metal sulfide, and a capping agent that limits growth of the insoluble metal sulfide species by electrosteric or steric stabilization. The particle growth is one of chemical reaction or significant aggregation, and the capping agent further functionalizes the reagent mixture to exhibit properties outside the natural characteristics of the metal sulfide species to allow for spectroscopic detection of the metal sulfide species. The combined mixture and fluid is then spectroscopically interrogated to detect the presence of the metal sulfide thereby indicating the presence of hydrogen sulfide in the fluid. The mixture also includes chelating ligands for sustaining thermal endurance of the mixture under downhole conditions.
    • 描述了用于光谱检测流体中的硫化氢的方法和相关装置和混合物,例如井下的地层流体。 将试剂混合物与流体混合。 试剂混合物包括用于与形成金属硫化物的硫化氢反应的金属离子和通过电动或空间稳定来限制不溶性金属硫化物物质生长的封端剂。 颗粒生长是化学反应或显着聚集之一,并且封端剂进一步使试剂混合物官能化以显示出金属硫化物种类的自然特性之外的性质,以允许金属硫化物物质的光谱检测。 然后将组合的混合物和流体光谱询问以检测金属硫化物的存在,从而指示流体中存在硫化氢。 混合物还包括螯合配体,用于在井下条件下维持混合物的耐热性。
    • 2. 发明授权
    • Thermal control of optical components
    • 光学部件的热控制
    • US07720328B2
    • 2010-05-18
    • US12241860
    • 2008-09-30
    • Ming YanAnthony J. TicknorCalvin HoHao XuJason WeaverThomas S. TarterJane Lam
    • Ming YanAnthony J. TicknorCalvin HoHao XuJason WeaverThomas S. TarterJane Lam
    • G02B6/12
    • G02B6/12026G01J3/0286G02B6/12011
    • A linearized thermal and optical model of an optical integrated circuit can be used to temperature-stabilize one or more optical elements of the circuit using active temperature regulation. To stabilize a single optical element, a temperature sensor and a heater can be provided proximate to the grating. Thermal and optical coefficients can be then used to select an appropriate temperature set-point for the temperature controller that receives readings from the sensor and determines the power dissipated in the heater. Multiple optical elements can be stabilized individually, using the same process and lumping cross-heating factors together with other environmental factors. Alternatively, multiple AWG's can be stabilized using fewer sensors than optical elements, by stabilizing one of the optical elements in the same manner as in the case of a single optical elements, and determining power dissipated in the heaters of the remaining optical elements based on the linearized model.
    • 可以使用光学集成电路的线性化热和光学模型来使用主动温度调节来温度稳定电路的一个或多个光学元件。 为了稳定单个光学元件,可以在光栅附近提供温度传感器和加热器。 然后可以使用热系数和光学系数为温度控制器选择适当的温度设定点,该温度控制器从传感器接收读数并确定加热器中消耗的功率。 多个光学元件可以单独稳定,使用相同的工艺并将交叉加热因子与其他环境因素结合在一起。 或者,通过以与单个光学元件的情况相同的方式来稳定光学元件之一,可以使用比光学元件少的传感器来稳定多个AWG,并且基于所述光学元件的剩余光学元件的加热器确定功率消耗 线性化模型。
    • 3. 发明授权
    • Thermal control of optical components
    • 光学部件的热控制
    • US07447393B2
    • 2008-11-04
    • US10760145
    • 2004-01-16
    • Ming YanAnthony J. TicknorCalvin HoHao XuJason WeaverThomas S. TarterJane Lam
    • Ming YanAnthony J. TicknorCalvin HoHao XuJason WeaverThomas S. TarterJane Lam
    • G02B6/12
    • G02B6/12026G01J3/0286G02B6/12011
    • A linearized thermal and optical model of an optical integrated circuit can be used to temperature-stabilize one or more optical elements of the circuit using active temperature regulation. To stabilize a single optical element, such as an arrayed waveguide grating (AWG), a temperature sensor and a heater can be provided proximate to the grating. Thermal and optical coefficients can be then used to select an appropriate temperature set-point for the temperature controller that receives readings from the sensor and determines the power dissipated in the heater. Multiple AWG's can be stabilized individually, using the same process and lumping cross-heating factors together with other environmental factors. Alternatively, multiple AWG's can be stabilized using fewer sensors than AWG's, by stabilizing one of the AWG's in the same manner as in the case of a single AWG, and determining power dissipated in the heaters of the remaining AWG's based on the linearized model.
    • 可以使用光学集成电路的线性化热和光学模型来使用主动温度调节来温度稳定电路的一个或多个光学元件。 为了稳定单个光学元件,例如阵列波导光栅(AWG),可以在光栅附近提供温度传感器和加热器。 然后可以使用热系数和光学系数为温度控制器选择适当的温度设定点,该温度控制器从传感器接收读数并确定加热器中消耗的功率。 多个AWG可以单独稳定,使用相同的过程并将交叉加热因子与其他环境因素结合在一起。 或者,通过使用比AWG更少的传感器,可以使用比AWG更少的传感器来稳定多个AWG,通过以与单个AWG相同的方式稳定AWG之一,并根据线性化模型确定剩余AWG的加热器中消耗的功率。
    • 6. 发明授权
    • Multi-band arrayed waveguide grating
    • 多波段阵列波导光栅
    • US06678446B1
    • 2004-01-13
    • US09970207
    • 2001-10-03
    • Kenneth McGreerJane Lam
    • Kenneth McGreerJane Lam
    • G02B634
    • G02B6/12016G02B6/12019
    • An arrayed waveguide grating router (AWGR) comprises sets of output waveguides for a number of bands. Angular separation of adjacent output waveguides is relatively small for adjacent output waveguides. within a band and significantly larger for adjacent output waveguides belonging to different bands. In specific embodiments the output waveguides are arranged into at least two bands, each band comprising at least two adjacent waveguides. Each band is used in conjunction with an input waveguide specific to the particular band. AWGRs according to the invention may be made so that the passbands from a plurality of output waveguides fall on a wavelength grid or a frequency grid. Dummy waveguides may be included for ease of fabrication.
    • 阵列波导光栅路由器(AWGR)包括用于多个频带的输出波导组。 相邻输出波导的角分离相对较小。 并且对于属于不同频带的相邻输出波导显着更大。 在具体实施例中,输出波导被布置成至少两个频带,每个频带包括至少两个相邻的波导。 每个频带与特定频带的输入波导结合使用。 可以进行根据本发明的AWGR,使得来自多个输出波导的通带落在波长网格或频率网格上。 可以包括虚拟波导以便于制造。
    • 9. 发明申请
    • Thermal control of optical components
    • 光学部件的热控制
    • US20060279734A1
    • 2006-12-14
    • US10760145
    • 2004-01-16
    • Ming YanAnthony TicknorCalvin HoHao XuJason WeaverThomas TarterJane Lam
    • Ming YanAnthony TicknorCalvin HoHao XuJason WeaverThomas TarterJane Lam
    • G01J3/28
    • G02B6/12026G01J3/0286G02B6/12011
    • A linearized thermal and optical model of an optical integrated circuit can be used to temperature-stabilize one or more optical elements of the circuit using active temperature regulation. To stabilize a single optical element, such as an arrayed waveguide grating (AWG), a temperature sensor and a heater can be provided proximate to the grating. Thermal and optical coefficients can be then used to select an appropriate temperature set-point for the temperature controller that receives readings from the sensor and determines the power dissipated in the heater. Multiple AWG's can be stabilized individually, using the same process and lumping cross-heating factors together with other environmental factors. Alternatively, multiple AWG's can be stabilized using fewer sensors than AWG's, by stabilizing one of the AWG's in the same manner as in the case of a single AWG, and determining power dissipated in the heaters of the remaining AWG's based on the linearized model.
    • 可以使用光学集成电路的线性化热和光学模型来使用主动温度调节来温度稳定电路的一个或多个光学元件。 为了稳定单个光学元件,例如阵列波导光栅(AWG),可以在光栅附近提供温度传感器和加热器。 然后可以使用热系数和光学系数为温度控制器选择适当的温度设定点,该温度控制器从传感器接收读数并确定加热器中消耗的功率。 多个AWG可以单独稳定,使用相同的过程并将交叉加热因子与其他环境因素结合在一起。 或者,通过使用比AWG更少的传感器,可以使用比AWG更少的传感器来稳定多个AWG,通过以与单个AWG相同的方式稳定AWG之一,并根据线性化模型确定剩余AWG的加热器中消耗的功率。