会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Measurement of torsional dynamics of rotating shafts using magnetostrictive sensors
    • 使用磁致伸缩传感器测量旋转轴的扭转动力学
    • US06779409B1
    • 2004-08-24
    • US09355177
    • 1999-07-27
    • Hegeon KwunGary L. BurkhardtCecil M. Teller
    • Hegeon KwunGary L. BurkhardtCecil M. Teller
    • G01L302
    • G01L3/102G01L3/105
    • A device and method for the non-contact measurement of dynamic torsion in a rotating shaft using magnetostrictive sensors (MsS). The monitoring and detection system has specially configured magnetostrictive signal detectors that include inductive pick-up coils, in which signals corresponding to localized shaft torques are induced. The basic system sensor utilizes either a permanent DC bias magnet positioned adjacent the rotating shaft or applies a residual magnetic field to the shaft. The techniques described in conjunction with the system are particularly advantageous for on-line monitoring of loaded rotating shafts that are integral parts of power trains, by providing a low-cost and a long-term sensor for acquiring dynamic data of the shaft portion of the machinery system being monitored and/or controlled.
    • 一种使用磁致伸缩传感器(MsS)在旋转轴中非接触测量动态扭矩的装置和方法。 监测和检测系统具有特殊配置的磁致伸缩信号检测器,其包括感应拾取线圈,其中感应对应于局部轴转矩的信号。 基本的系统传感器利用与旋转轴相邻定位的永磁直流偏置磁铁或向轴施加残余磁场。 结合该系统描述的技术对于在线监测作为动力传动系统的组成部分的负载旋转轴是特别有利的,通过提供一种低成本和长期的传感器来获取动力系统的轴部分的动态数据 机械系统被监控和/或控制。
    • 2. 发明授权
    • Nondestructive evaluation of ferromagnetic cables and ropes using
magnetostrictively induced acoustic/ultrasonic waves and
magnetostrictively detected acoustic emissions
    • 使用磁致伸缩诱导声/超声波和磁致伸缩检测声发射的铁磁电缆和绳索的非破坏性评估
    • US5456113A
    • 1995-10-10
    • US973152
    • 1992-11-06
    • Hegeon KwunCecil M. Teller, II
    • Hegeon KwunCecil M. Teller, II
    • G01N29/14G01N29/24G01N29/08
    • G01N29/2412G01N29/14G01N2291/0258G01N2291/0422G01N2291/048G01N2291/101G01N2291/102G01N2291/2626
    • A method and apparatus for the nondestructive evaluation of ferromagnetic and non-ferromagnetic materials, particularly wire ropes, cables, and strands, and pipes utilizing the magnetostrictive effect for measuring minute variations in magnetic fields and characterizing these minute variations as indicative of the acoustic/ultrasonic behavior of fractures, cracks, and other anomalies within a substance under evaluation. The apparatus and method contemplate both an active testing application, wherein a transmitting sensor generates an acoustic/ultrasonic pulse within a material through the magnetostrictive effect and a second receiving sensor detects reflected acoustic/ultrasonic waves within the material, again by the inverse magnetostrictive effect. The advantages of utilizing magnetostrictive sensors as opposed to well known piezoelectric sensors lies in the ability to generate and detect acoustic/ultrasonic waves without a direct physical or acoustical contact to the material. The apparatus and method of the present invention also anticipates the use of a passive monitoring system comprised only of a receiving magnetostrictive sensor that continuously monitors a ferromagnetic or non-ferromagnetic substance for acoustic emissions and either records this monitored information or alerts the appropriate personnel of the existence of an acoustic emission indicating deterioration within the structure.
    • 铁磁和非铁磁材料,特别是钢丝绳,电缆和股线的非破坏性评估的方法和装置,以及利用磁致伸缩效应测量磁场中的微小变化并且将这些微小变化表征为声/超声 被评估物质内的裂缝,裂缝等异常行为。 该装置和方法考虑了主动测试应用,其中发射传感器通过磁致伸缩效应在材料内产生声/超声波脉冲,第二接收传感器再次通过反向磁致伸缩效应来检测材料内的反射声/超声波。 使用磁致伸缩传感器与众所周知的压电传感器相比的优点在于能够产生和检测声/超声波,而没有与材料的直接物理或声学接触。 本发明的装置和方法还预期使用无源监测系统,其仅由接收磁​​致伸缩传感器构成,其接收磁致伸缩传感器,其连续地监测用于声发射的铁磁或非铁磁性物质,并且记录该监测信息或者警告适当的人员 存在表示结构内的劣化的声发射。
    • 3. 发明授权
    • Nondestructive evaluation of pipes and tubes using magnetostrictive
sensors
    • 使用磁致伸缩传感器对管道进行非破坏性评估
    • US5581037A
    • 1996-12-03
    • US401170
    • 1995-03-09
    • Hegeon KwunCecil M. Teller, II
    • Hegeon KwunCecil M. Teller, II
    • G01N29/04G01N29/14G01N29/24G01N29/28
    • G01N29/14G01N29/2412G01N2291/0421G01N2291/048G01N2291/101G01N2291/102G01N2291/2626G01N2291/2634
    • A method and apparatus for the inspection of ferromagnetic and non-ferromagnetic pipes, tubes or other cylindrical shell structures utilizing the magnetostrictive effect to detect defects such as corrosion pits, wall thinning, and cracks within the structure under evaluation. The apparatus and method constitute an active testing application, wherein 1) a transmitting coil element generates a mechanical pulse within a cylindrical shell structure through the magnetostrictive effect and a second coil detects reflected mechanical waves within the pipe, this by the inverse magnetostrictive effect, or 2) a single sensor functions as both transmitter and detector. The present invention also anticipates a passive monitoring application with a detection coil that continuously monitors ferromagnetic or non-ferromagnetic tubes, pipes, etc., for mechanical or acoustic wave emissions and either records this monitored information or alerts the appropriate personnel to the existence of mechanical or acoustic wave emissions indicative of deterioration. Non-ferromagnetic pipes, tubes, etc., are made amenable to inspection by attaching a layer of ferromagnetic material such as nickel on either the inner or outer walls of the pipes, tubes, etc. by plating or bonding such material in a local area where the sensor is to be placed.
    • 利用磁致伸缩效应检测铁磁和非铁磁管,管或其它圆柱壳结构的方法和装置,以检测在评估结构内的缺陷如腐蚀坑,壁变薄和裂纹。 该装置和方法构成主动测试应用,其中1)发射线圈元件通过磁致伸缩效应在圆柱形外壳结构内产生机械脉冲,第二线圈通过反向磁致伸缩效应来检测管内反射的机械波,或 2)单个传感器用作发射器和检测器。 本发明还预期具有检测线圈的被动监测应用,该检测线圈连续监测用于机械或声波发射的铁磁或非铁磁管,管等,并且记录该监测信息或者警告适当的人员存在机械 或指示恶化的声波发射。 非铁磁管,管等可以通过在局部区域中电镀或粘合这种材料将诸如镍的铁磁性材料层附接在管,管等的内壁或外壁上来进行检查 传感器放置在哪里。
    • 4. 发明授权
    • Nondestructive evaluation of non-ferromagnetic materials using
magnetostrictively induced acoustic/ultrasonic waves and
magnetostrictively detected acoustic emissions
    • 使用磁致伸缩诱导声/超声波和磁致伸缩检测声发射的非铁磁材料的非破坏性评估
    • US5457994A
    • 1995-10-17
    • US33256
    • 1993-03-16
    • Hegeon KwunCecil M. Teller, II
    • Hegeon KwunCecil M. Teller, II
    • G01N29/14G01N29/24G01N29/28
    • G01N29/14G01N29/2412G01N2291/0258G01N2291/0422G01N2291/048G01N2291/101G01N2291/102G01N2291/2626
    • A method and apparatus for the nondestructive evaluation of ferromagnetic and non-ferromagnetic materials, particularly wire ropes, cables, and strands, and pipes utilizing the magnetostrictive effect for measuring minute variations in magnetic fields and characterizing these minute variations as indicative of the acoustic/ultrasonic behavior of fractures, cracks, and other anomalies within a substance under evaluation. The apparatus and method contemplate both an active testing application, wherein a transmitting sensor generates an acoustic/ultrasonic pulse within a material through the magnetostrictive effect and a second receiving sensor detects reflected acoustic/ultrasonic waves within the material, again by the inverse magnetostrictive effect. The advantages of utilizing magnetostrictive sensors as opposed to well known piezoelectric sensors lies in the ability to generate and detect acoustic/ultrasonic waves without a direct physical or acoustical contact to the material. The apparatus and method of the present invention also anticipates the use of a passive monitoring system comprised only of a receiving magnetostrictive sensor that continuously monitors a ferromagnetic or non-ferromagnetic substance for acoustic emissions and either records this monitored information or alerts the appropriate personnel of the existence of an acoustic emission indicating deterioration within the structure.
    • 铁磁和非铁磁材料,特别是钢丝绳,电缆和股线的非破坏性评估的方法和装置,以及利用磁致伸缩效应测量磁场中的微小变化并且将这些微小变化表征为声/超声 被评估物质内的裂缝,裂缝等异常行为。 该装置和方法考虑了主动测试应用,其中发射传感器通过磁致伸缩效应在材料内产生声/超声波脉冲,第二接收传感器再次通过反磁致伸缩效应来检测材料内的反射声/超声波。 使用磁致伸缩传感器与众所周知的压电传感器相比的优点在于能够产生和检测声/超声波,而没有与材料的直接物理或声学接触。 本发明的装置和方法还预期使用无源监测系统,其仅由接收磁​​致伸缩传感器构成,其接收磁致伸缩传感器,其连续地监测用于声发射的铁磁或非铁磁性物质,并且记录该监测信息或者警告适当的人员 存在表示结构内的劣化的声发射。
    • 5. 发明授权
    • Apparatus and method for monitoring engine conditions, using magnetostrictive sensors
    • 使用磁致伸缩传感器监测发动机条件的装置和方法
    • US06212944B1
    • 2001-04-10
    • US08808119
    • 1997-02-28
    • Hegeon KwunCecil M. TellerRoy C. MeyerKendall R. Swenson
    • Hegeon KwunCecil M. TellerRoy C. MeyerKendall R. Swenson
    • G01M1500
    • G01L23/223G01M15/12Y10S73/02
    • A method and apparatus is provided for the sensing, collection, and analysis of information on combustive and mechanical events occurring within an operating internal combustion engine through the measurement of mechanical stress waves present within the engine. The system includes a magnetostrictive sensor placed in mechanical compliance with the engine, preferably the engine block, which detects and translates stress waves into an electrical signal that is filtered and amplified for recording and/or for analysis. Information regarding the frequency, amplitude, and timing changes within the signal is utilized to characterize the ordinary operation of the engine and to identify anomalous events. The system includes a means for maintaining a signal record and comparing signal features with past records for a particular engine or with standard signal features associated generally with certain engine events. The system apparatus can be implemented in a laboratory or technical setting or may be configured as an on-board monitoring system with correctional feedback capabilities.
    • 提供了一种用于通过测量发动机内存在的机械应力波来感测,收集和分析在操作内燃机内发生的燃烧和机械事件的信息的方法和装置。 该系统包括磁致伸缩传感器,该磁致伸缩传感器放置成机械地符合发动机,优选地是发动机缸体,其检测并将应力波转换成被过滤和放大用于记录和/或分析的电信号。 关于信号内的频率,幅度和时间变化的信息用于表征发动机的普通操作并识别异常事件。 该系统包括用于维持信号记录并将信号特征与用于特定发动机的过去记录进行比较的装置或具有与某些发动机事件通常相关的标准信号特征的装置。 系统装置可以在实验室或技术设置中实现,或者可以被配置为具有校正反馈能力的车载监视系统。
    • 6. 发明授权
    • Nondestructive testing of stress in a ferromagnetic structural material
utilizing magnetically induced velocity change measurements
    • 利用磁感应速度变化测量对铁磁结构材料中的应力进行非破坏性测试
    • US4497209A
    • 1985-02-05
    • US513059
    • 1983-07-12
    • Hegeon KwunCecil M. Teller, II
    • Hegeon KwunCecil M. Teller, II
    • G01N27/72G01N29/07G01N22/00
    • G01N27/725G01N29/07G01N2291/02863
    • This disclosure relates to a nondestructive method of measuring stress in a ferromagnetic structural material. One method involves the measurement of the change in ultrasonic velocity induced by an externally applied magnetic field; the method enables nondestructively determining the magnitude, the direction, and the sign (i.e., tensile or compressive) of a stress in a ferromagnetic material. The magnetically induced velocity change of an ultrasonic wave is caused by the magnetoelastic coupling in the ferromagnetic material. This magnetically induced velocity change is characteristically dependent on the magnitude and the sign of the stress and also on the relative orientation of the stress, the magnetic field, and the polarization and propagation direction of the ultrasonic wave. The dependence of magnetically induced velocity changes can be utilized for nondestructive stress measurements. In one version, for measuring bulk stresses, either a longitudinal ultrasonic wave or a shear ultrasonic wave is used. In another version, for measuring surface stresses, a surface ultrasonic wave is preferably used. By using surface waves at several different frequencies, a stress gradient can also be determined.
    • 本公开涉及一种测量铁磁结构材料中的应力的非破坏性方法。 一种方法包括测量由外部施加的磁场引起的超声速度的变化; 该方法能够非破坏性地确定铁磁材料中的应力的大小,方向和符号(即拉伸或压缩)。 超声波的磁感应速度变化是由铁磁材料中的磁弹性耦合引起的。 这种磁感应速度变化特征取决于应力的大小和符号,以及超声波的应力,磁场和极化和传播方向的相对取向。 磁感应速度变化的依赖性可用于非破坏性应力测量。 在一个版本中,为了测量体积应力,使用纵向超声波或剪切超声波。 在另一个版本中,为了测量表面应力,优选使用表面超声波。 通过使用几个不同频率的表面波,也可以确定应力梯度。
    • 7. 发明授权
    • Nonlinear harmonics method and system for measuring degradation in protective coatings
    • 用于测量保护涂层退化的非线性谐波法和系统
    • US06201391B1
    • 2001-03-13
    • US09168185
    • 1998-10-07
    • Gary L. BurkhardtHegeon Kwun
    • Gary L. BurkhardtHegeon Kwun
    • G01B706
    • G01N27/82
    • A system and method for nondestructive testing of a workpiece having a metallic protective coating utilizing nonlinear harmonics techniques to determine degradation within the metallic protective coating. The invention use a time-varying magnetic field to sense magnetic properties of the protective coating. The odd-numbered harmonic frequencies are detected and their amplitudes are related to the magnetic condition of the material under test to determine coating degradation. When no harmonic signal caused by an induced magnetic field is detected, the coating is not degraded. When a harmonic signal is detected, the coating has degraded. Nonlinear harmonics techniques are used to determine the amount of coating degradation.
    • 一种用于非金属保护涂层的工件的非破坏性测试的系统和方法,其利用非线性谐波技术来确定金属保护涂层内的退化。 本发明使用时变磁场来感测保护涂层的磁性能。 检测到奇数个谐波频率,并且其幅度与被测材料的磁条件相关,以确定涂层退化。 当没有检测到由感应磁场引起的谐波信号时,涂层不会降解。 当检测到谐波信号时,涂层退化。 非线性谐波技术用于确定涂层退化的量。
    • 8. 发明授权
    • Detection of reinforcing steel corrosion in concrete structures using
non-linear harmonic and intermodulation wave generation
    • 使用非线性谐波和互调波产生检测混凝土结构中的钢筋腐蚀
    • US5180969A
    • 1993-01-19
    • US830702
    • 1992-02-04
    • Hegeon KwunGary L. BurkhardtJay L. Fisher
    • Hegeon KwunGary L. BurkhardtJay L. Fisher
    • G01N27/90
    • G01N27/9046G01N27/904
    • A method for rapidly detecting and locating reinforcing steel corrosion in concrete structures using non-linear harmonic and intermodulated frequencies of electromagnetic signals. The method comprises transmitting either a single primary frequency or two primary frequencies into the concrete structure in the general direction of the reinforcing steel. The reflected/generated signal, which is composed of the primary frequencies and of various harmonics and intermodulation components, is received, filtered, and amplified. A third order harmonic frequency is isolated with a band pass filter, is amplified, and is compared with the amplitudes of the primary frequencies. Intermodulation frequencies, primarily the combination of the primary of a frequency and the second harmonic of a second frequency, or the primary of a second frequency and the second harmonic of a first frequency, are isolated by appropriate band pass filter, are amplified, and are compared with the primary frequency or frequencies. The comparative amplitudes of these harmonics or intermodulation frequencies are displayed and recorded, and are correlated with a degree of corrosion in the reinforcing steel.
    • 一种使用非线性谐波和电磁信号互调频率快速检测和定位混凝土结构中钢筋腐蚀的方法。 该方法包括在钢筋的大致方向上将单个主要频率或两个主要频率传输到混凝土结构中。 由主要频率和各种谐波和互调分量组成的反射/产生信号被接收,滤波和放大。 三阶谐波频率与带通滤波器隔离,被放大,并与主频率的幅度进行比较。 互调频率,主要是频率的初级和第二频率的二次谐波的组合,或第一频率的初级和第一频率的二次谐波由适当的带通滤波器隔离,被放大,并且是 与主要频率或频率相比较。 显示和记录这些谐波或互调频率的比较幅度,并与加强钢中的腐蚀程度相关。
    • 10. 发明授权
    • Magnetostrictive sensor probe for guided-wave inspection and monitoring of wire ropes/cables and anchor rods
    • 用于导线检测和监测钢丝绳/电缆和锚杆的磁致伸缩传感器探头
    • US08098065B2
    • 2012-01-17
    • US12411335
    • 2009-03-25
    • Hegeon KwunAlbert J. Parvin, Jr.Erika Christine Laiche
    • Hegeon KwunAlbert J. Parvin, Jr.Erika Christine Laiche
    • G01N27/82G01H11/04
    • G01N29/2412G01N2291/2626
    • An economical, flexible, magnetostrictive sensor (MsS) probe assembly for use on longitudinal cylindrical structures, for guided-wave, volumetric inspection of the structures is described. The paired flexible plate MsS probes each include a flexible strip of magnetostrictive material that is positioned and/or adhered to the base of a generally flat, flexible, conductor coil assembly, preferably with an elastomeric adhesive. The conductor coil assembly has a core composed of a thin flexible layer of metal and a thin bendable permanent magnet circuit. The flexible core is surrounded by a flat flexible cable (FFC) that is folded and looped over the layers of the core. The exposed conductors at the ends of the FFC are shifted from each other by one conductor spacing and joined together so that the parallel conductors in the FFC form a flat, flexible, continuous coil. The probe assemblies may preferably be utilized in pairs and conformed to match the curved contours of the cylindrical surface of the structure under investigation in a manner that is specifically tailored for wire rope, cable, and anchor rod type applications.
    • 描述了一种用于纵向圆柱形结构的经济,灵活,磁致伸缩传感器(MsS)探头组件,用于导波,体积检查结构。 成对的柔性板MsS探针各自包括柔性的磁致伸缩材料条,其被定位和/或粘附到基本上平坦,柔性的导体线圈组件的基部,优选地具有弹性体粘合剂。 导体线圈组件具有由薄的柔性金属层和薄的可弯曲的永磁体电路构成的芯。 柔性芯由平坦的柔性电缆(FFC)包围,该柔性电缆被折叠并环绕在芯的层上。 FFC端部的暴露的导体彼此间隔一个导体间距并连接在一起,使得FFC中的平行导体形成平坦,柔性,连续的线圈。 探针组件可以优选成对使用并且使其符合调查结构的圆柱形表面的弯曲轮廓,其方式是专门针对钢丝绳,电缆和锚杆型应用。