会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Nondestructive evaluation of ferromagnetic cables and ropes using
magnetostrictively induced acoustic/ultrasonic waves and
magnetostrictively detected acoustic emissions
    • 使用磁致伸缩诱导声/超声波和磁致伸缩检测声发射的铁磁电缆和绳索的非破坏性评估
    • US5456113A
    • 1995-10-10
    • US973152
    • 1992-11-06
    • Hegeon KwunCecil M. Teller, II
    • Hegeon KwunCecil M. Teller, II
    • G01N29/14G01N29/24G01N29/08
    • G01N29/2412G01N29/14G01N2291/0258G01N2291/0422G01N2291/048G01N2291/101G01N2291/102G01N2291/2626
    • A method and apparatus for the nondestructive evaluation of ferromagnetic and non-ferromagnetic materials, particularly wire ropes, cables, and strands, and pipes utilizing the magnetostrictive effect for measuring minute variations in magnetic fields and characterizing these minute variations as indicative of the acoustic/ultrasonic behavior of fractures, cracks, and other anomalies within a substance under evaluation. The apparatus and method contemplate both an active testing application, wherein a transmitting sensor generates an acoustic/ultrasonic pulse within a material through the magnetostrictive effect and a second receiving sensor detects reflected acoustic/ultrasonic waves within the material, again by the inverse magnetostrictive effect. The advantages of utilizing magnetostrictive sensors as opposed to well known piezoelectric sensors lies in the ability to generate and detect acoustic/ultrasonic waves without a direct physical or acoustical contact to the material. The apparatus and method of the present invention also anticipates the use of a passive monitoring system comprised only of a receiving magnetostrictive sensor that continuously monitors a ferromagnetic or non-ferromagnetic substance for acoustic emissions and either records this monitored information or alerts the appropriate personnel of the existence of an acoustic emission indicating deterioration within the structure.
    • 铁磁和非铁磁材料,特别是钢丝绳,电缆和股线的非破坏性评估的方法和装置,以及利用磁致伸缩效应测量磁场中的微小变化并且将这些微小变化表征为声/超声 被评估物质内的裂缝,裂缝等异常行为。 该装置和方法考虑了主动测试应用,其中发射传感器通过磁致伸缩效应在材料内产生声/超声波脉冲,第二接收传感器再次通过反向磁致伸缩效应来检测材料内的反射声/超声波。 使用磁致伸缩传感器与众所周知的压电传感器相比的优点在于能够产生和检测声/超声波,而没有与材料的直接物理或声学接触。 本发明的装置和方法还预期使用无源监测系统,其仅由接收磁​​致伸缩传感器构成,其接收磁致伸缩传感器,其连续地监测用于声发射的铁磁或非铁磁性物质,并且记录该监测信息或者警告适当的人员 存在表示结构内的劣化的声发射。
    • 2. 发明授权
    • Nondestructive evaluation of pipes and tubes using magnetostrictive
sensors
    • 使用磁致伸缩传感器对管道进行非破坏性评估
    • US5581037A
    • 1996-12-03
    • US401170
    • 1995-03-09
    • Hegeon KwunCecil M. Teller, II
    • Hegeon KwunCecil M. Teller, II
    • G01N29/04G01N29/14G01N29/24G01N29/28
    • G01N29/14G01N29/2412G01N2291/0421G01N2291/048G01N2291/101G01N2291/102G01N2291/2626G01N2291/2634
    • A method and apparatus for the inspection of ferromagnetic and non-ferromagnetic pipes, tubes or other cylindrical shell structures utilizing the magnetostrictive effect to detect defects such as corrosion pits, wall thinning, and cracks within the structure under evaluation. The apparatus and method constitute an active testing application, wherein 1) a transmitting coil element generates a mechanical pulse within a cylindrical shell structure through the magnetostrictive effect and a second coil detects reflected mechanical waves within the pipe, this by the inverse magnetostrictive effect, or 2) a single sensor functions as both transmitter and detector. The present invention also anticipates a passive monitoring application with a detection coil that continuously monitors ferromagnetic or non-ferromagnetic tubes, pipes, etc., for mechanical or acoustic wave emissions and either records this monitored information or alerts the appropriate personnel to the existence of mechanical or acoustic wave emissions indicative of deterioration. Non-ferromagnetic pipes, tubes, etc., are made amenable to inspection by attaching a layer of ferromagnetic material such as nickel on either the inner or outer walls of the pipes, tubes, etc. by plating or bonding such material in a local area where the sensor is to be placed.
    • 利用磁致伸缩效应检测铁磁和非铁磁管,管或其它圆柱壳结构的方法和装置,以检测在评估结构内的缺陷如腐蚀坑,壁变薄和裂纹。 该装置和方法构成主动测试应用,其中1)发射线圈元件通过磁致伸缩效应在圆柱形外壳结构内产生机械脉冲,第二线圈通过反向磁致伸缩效应来检测管内反射的机械波,或 2)单个传感器用作发射器和检测器。 本发明还预期具有检测线圈的被动监测应用,该检测线圈连续监测用于机械或声波发射的铁磁或非铁磁管,管等,并且记录该监测信息或者警告适当的人员存在机械 或指示恶化的声波发射。 非铁磁管,管等可以通过在局部区域中电镀或粘合这种材料将诸如镍的铁磁性材料层附接在管,管等的内壁或外壁上来进行检查 传感器放置在哪里。
    • 3. 发明授权
    • Nondestructive evaluation of non-ferromagnetic materials using
magnetostrictively induced acoustic/ultrasonic waves and
magnetostrictively detected acoustic emissions
    • 使用磁致伸缩诱导声/超声波和磁致伸缩检测声发射的非铁磁材料的非破坏性评估
    • US5457994A
    • 1995-10-17
    • US33256
    • 1993-03-16
    • Hegeon KwunCecil M. Teller, II
    • Hegeon KwunCecil M. Teller, II
    • G01N29/14G01N29/24G01N29/28
    • G01N29/14G01N29/2412G01N2291/0258G01N2291/0422G01N2291/048G01N2291/101G01N2291/102G01N2291/2626
    • A method and apparatus for the nondestructive evaluation of ferromagnetic and non-ferromagnetic materials, particularly wire ropes, cables, and strands, and pipes utilizing the magnetostrictive effect for measuring minute variations in magnetic fields and characterizing these minute variations as indicative of the acoustic/ultrasonic behavior of fractures, cracks, and other anomalies within a substance under evaluation. The apparatus and method contemplate both an active testing application, wherein a transmitting sensor generates an acoustic/ultrasonic pulse within a material through the magnetostrictive effect and a second receiving sensor detects reflected acoustic/ultrasonic waves within the material, again by the inverse magnetostrictive effect. The advantages of utilizing magnetostrictive sensors as opposed to well known piezoelectric sensors lies in the ability to generate and detect acoustic/ultrasonic waves without a direct physical or acoustical contact to the material. The apparatus and method of the present invention also anticipates the use of a passive monitoring system comprised only of a receiving magnetostrictive sensor that continuously monitors a ferromagnetic or non-ferromagnetic substance for acoustic emissions and either records this monitored information or alerts the appropriate personnel of the existence of an acoustic emission indicating deterioration within the structure.
    • 铁磁和非铁磁材料,特别是钢丝绳,电缆和股线的非破坏性评估的方法和装置,以及利用磁致伸缩效应测量磁场中的微小变化并且将这些微小变化表征为声/超声 被评估物质内的裂缝,裂缝等异常行为。 该装置和方法考虑了主动测试应用,其中发射传感器通过磁致伸缩效应在材料内产生声/超声波脉冲,第二接收传感器再次通过反磁致伸缩效应来检测材料内的反射声/超声波。 使用磁致伸缩传感器与众所周知的压电传感器相比的优点在于能够产生和检测声/超声波,而没有与材料的直接物理或声学接触。 本发明的装置和方法还预期使用无源监测系统,其仅由接收磁​​致伸缩传感器构成,其接收磁致伸缩传感器,其连续地监测用于声发射的铁磁或非铁磁性物质,并且记录该监测信息或者警告适当的人员 存在表示结构内的劣化的声发射。
    • 4. 发明授权
    • Nondestructive testing of stress in a ferromagnetic structural material
utilizing magnetically induced velocity change measurements
    • 利用磁感应速度变化测量对铁磁结构材料中的应力进行非破坏性测试
    • US4497209A
    • 1985-02-05
    • US513059
    • 1983-07-12
    • Hegeon KwunCecil M. Teller, II
    • Hegeon KwunCecil M. Teller, II
    • G01N27/72G01N29/07G01N22/00
    • G01N27/725G01N29/07G01N2291/02863
    • This disclosure relates to a nondestructive method of measuring stress in a ferromagnetic structural material. One method involves the measurement of the change in ultrasonic velocity induced by an externally applied magnetic field; the method enables nondestructively determining the magnitude, the direction, and the sign (i.e., tensile or compressive) of a stress in a ferromagnetic material. The magnetically induced velocity change of an ultrasonic wave is caused by the magnetoelastic coupling in the ferromagnetic material. This magnetically induced velocity change is characteristically dependent on the magnitude and the sign of the stress and also on the relative orientation of the stress, the magnetic field, and the polarization and propagation direction of the ultrasonic wave. The dependence of magnetically induced velocity changes can be utilized for nondestructive stress measurements. In one version, for measuring bulk stresses, either a longitudinal ultrasonic wave or a shear ultrasonic wave is used. In another version, for measuring surface stresses, a surface ultrasonic wave is preferably used. By using surface waves at several different frequencies, a stress gradient can also be determined.
    • 本公开涉及一种测量铁磁结构材料中的应力的非破坏性方法。 一种方法包括测量由外部施加的磁场引起的超声速度的变化; 该方法能够非破坏性地确定铁磁材料中的应力的大小,方向和符号(即拉伸或压缩)。 超声波的磁感应速度变化是由铁磁材料中的磁弹性耦合引起的。 这种磁感应速度变化特征取决于应力的大小和符号,以及超声波的应力,磁场和极化和传播方向的相对取向。 磁感应速度变化的依赖性可用于非破坏性应力测量。 在一个版本中,为了测量体积应力,使用纵向超声波或剪切超声波。 在另一个版本中,为了测量表面应力,优选使用表面超声波。 通过使用几个不同频率的表面波,也可以确定应力梯度。
    • 5. 发明授权
    • Magnetostrictive sensor probe for guided-wave inspection and monitoring of wire ropes/cables and anchor rods
    • 用于导线检测和监测钢丝绳/电缆和锚杆的磁致伸缩传感器探头
    • US08098065B2
    • 2012-01-17
    • US12411335
    • 2009-03-25
    • Hegeon KwunAlbert J. Parvin, Jr.Erika Christine Laiche
    • Hegeon KwunAlbert J. Parvin, Jr.Erika Christine Laiche
    • G01N27/82G01H11/04
    • G01N29/2412G01N2291/2626
    • An economical, flexible, magnetostrictive sensor (MsS) probe assembly for use on longitudinal cylindrical structures, for guided-wave, volumetric inspection of the structures is described. The paired flexible plate MsS probes each include a flexible strip of magnetostrictive material that is positioned and/or adhered to the base of a generally flat, flexible, conductor coil assembly, preferably with an elastomeric adhesive. The conductor coil assembly has a core composed of a thin flexible layer of metal and a thin bendable permanent magnet circuit. The flexible core is surrounded by a flat flexible cable (FFC) that is folded and looped over the layers of the core. The exposed conductors at the ends of the FFC are shifted from each other by one conductor spacing and joined together so that the parallel conductors in the FFC form a flat, flexible, continuous coil. The probe assemblies may preferably be utilized in pairs and conformed to match the curved contours of the cylindrical surface of the structure under investigation in a manner that is specifically tailored for wire rope, cable, and anchor rod type applications.
    • 描述了一种用于纵向圆柱形结构的经济,灵活,磁致伸缩传感器(MsS)探头组件,用于导波,体积检查结构。 成对的柔性板MsS探针各自包括柔性的磁致伸缩材料条,其被定位和/或粘附到基本上平坦,柔性的导体线圈组件的基部,优选地具有弹性体粘合剂。 导体线圈组件具有由薄的柔性金属层和薄的可弯曲的永磁体电路构成的芯。 柔性芯由平坦的柔性电缆(FFC)包围,该柔性电缆被折叠并环绕在芯的层上。 FFC端部的暴露的导体彼此间隔一个导体间距并连接在一起,使得FFC中的平行导体形成平坦,柔性,连续的线圈。 探针组件可以优选成对使用并且使其符合调查结构的圆柱形表面的弯曲轮廓,其方式是专门针对钢丝绳,电缆和锚杆型应用。
    • 6. 发明授权
    • Flexible plate magnetostrictive sensor probe for guided-wave inspection of structures
    • 用于结构导波检测的柔性板式磁致伸缩传感器探头
    • US07913562B2
    • 2011-03-29
    • US12201989
    • 2008-08-29
    • Hegeon KwunAlbert J. ParvinRonald H. Peterson
    • Hegeon KwunAlbert J. ParvinRonald H. Peterson
    • G01N29/04G01N29/00
    • G01N29/2412G01N29/043G01N2291/0425
    • An economical, flexible, magnetostrictive sensor for use on planar and/or curved structural surfaces, for guided-wave volumetric inspection of the structure. The flexible plate MsS probe includes a flexible strip of magnetostrictive material that is adhered to the base of a flat, flexible, conductor coil assembly. The conductor coil assembly has a core that is composed of a thin flexible strip of metal, a layer of an elastomeric material, and a thin permanent magnet circuit. The flexible core is surrounded by a flat flexible cable (FFC) that is folded and looped over the layers of the core. The exposed conductors at the ends of the FFC are shifted from each other by one conductor and joined so that the parallel conductors in the FFC form a flat, flexible, continuous coil. The entire probe assembly may be bent to match the curved contours of the surface of the structure under investigation.
    • 用于平面和/或弯曲结构表面的经济,灵活的磁致伸缩传感器,用于结构的导波体积检查。 柔性板MsS探针包括粘附到扁平,柔性的导体线圈组件的基部的柔性带状磁致伸缩材料。 导体线圈组件具有由薄的柔性金属条,弹性体材料层和薄的永磁体电路组成的芯。 柔性芯由平坦的柔性电缆(FFC)包围,该柔性电缆被折叠并环绕在芯的层上。 FFC端部的暴露导体彼此相互移动一根导线,使FFC中的平行导体形成一个扁平,柔性,连续的线圈。 整个探针组件可以被弯曲以匹配被调查结构的表面的弯曲轮廓。
    • 8. 发明授权
    • Method and device for long-range guided-wave inspection of fire side of waterwall tubes in boilers
    • 锅炉水管火灾侧远程导波检测方法及装置
    • US07474092B1
    • 2009-01-06
    • US11778256
    • 2007-07-16
    • Hegeon KwunHirotoshi MatsumotoJames F. Crane
    • Hegeon KwunHirotoshi MatsumotoJames F. Crane
    • G01N27/82G01N27/00G01R33/18
    • G01N29/2412G01N29/043G01N29/226G01N29/265G01N29/28G01N2291/0422G01N2291/044G01N2291/2634G01N2291/2695G01R33/18
    • Methods and devices for inspecting waterwall tubes for the detection of fire side damage over a long length of the tube are described. The system of the invention uses a magnetostrictive strip and a flat coil-type plate magnetostrictive sensor (MsS) that are held in place on the waterwall using a specially designed frame and an electromagnetic circuit. The magnetostrictive strip and plate type MsS are positioned against a tube in the waterwall using an elastomeric pad or a fluid filled bladder to achieve close contact and good mechanical coupling between the magnetostrictive strip and the tube surface. When current activated, the electromagnet holds the entire assembly in place and provides a DC bias magnetic field required for plate magnetostrictive sensor probe operation. Long-range guided-waves are pulsed into the tube and reflected signals are detected within the same sensor structure. The received signal data representative of a long section of the tube under investigation is then analyzed for the presence of anomalies and defects. When data acquisition for a particular tube or tube section is completed the electromagnet is turned off and the entire device is moved to the next tube in the waterwall.
    • 描述了用于检测水壁管用于检测长管长度上的火侧损伤的方法和装置。 本发明的系统采用使用专门设计的框架和电磁电路将水平保持在水壁上的磁致伸缩带和扁平线圈型磁致伸缩传感器(MsS)。 磁致伸缩条和板型MsS使用弹性垫或流体填充的气囊来抵靠水壁中的管定位,以实现磁致伸缩带与管表面之间的紧密接触和良好的机械耦合。 当电流激活时,电磁铁将整个组件保持就位,并提供板式磁致伸缩传感器探头操作所需的直流偏置磁场。 将长程导波脉冲入管内,并在同一传感器结构内检测反射信号。 然后分析表示正在研究的管的长截面的接收信号数据是否存在异常和缺陷。 当特定管或管段的数据采集完成时,电磁铁被关闭,并且整个装置移动到水壁中的下一个管。
    • 9. 发明申请
    • Time-gain control method and system for long-range guided-wave inspection and monitoring
    • 用于远程导波检测和监测的时间增益控制方法和系统
    • US20070225930A1
    • 2007-09-27
    • US11715655
    • 2007-03-08
    • Hegeon KwunRonald Peterson
    • Hegeon KwunRonald Peterson
    • G06F19/00G06F17/40
    • G01N29/4463G01N29/42G01N2291/02854G01N2291/0425G01N2291/267
    • Systems and methods are described that carry out an intelligent, variable, time-gain control (TGC) of signal amplification in a long-range, guided-wave inspection and monitoring system. The systems and methods compensate for signal attenuation over the longer distances that guided-wave inspection techniques are capable of operating with. The sensor signal received is divided into relevant frequency bands that are each subjected to a variable TGC through separate variable gain amplifiers (VGAs). The gain selection is processor controlled through the use of a digital look-up table (LUT) stored with predetermined gain functions and/or data that are both time and frequency specific. The signal components are re-combined and digitized for further signal analysis and defect detection. The LUT is established through one or more methods including a weld signal amplitude equalization approach and a background noise equalization approach.
    • 描述了在远程导波检测和监测系统中执行信号放大的智能,可变的时间增益控制(TGC)的系统和方法。 这些系统和方法可以补偿导波检测技术能够运行的更长距离的信号衰减。 所接收的传感器信号被分成相关的频带,每个频带通过单独的可变增益放大器(VGA)经受可变TGC。 通过使用存储有既具有时间和频率特性的预定增益函数和/或数据的数字查找表(LUT)来对增益选择进行处理器控制。 信号分量被重新组合和数字化,用于进一步的信号分析和缺陷检测。 LUT通过一种或多种方法建立,包括焊接信号幅度均衡方法和背景噪声均衡方法。
    • 10. 发明申请
    • Method and apparatus for sensing fuel levels in tanks
    • 用于检测油箱中油位的方法和装置
    • US20070169549A1
    • 2007-07-26
    • US11656814
    • 2007-01-23
    • Hegeon KwunRonald H. Peterson
    • Hegeon KwunRonald H. Peterson
    • G01F23/22
    • G01F23/2965
    • An apparatus and method are described that utilize longitudinal guided waves propagated along a rod placed in a vehicle fuel tank, or the like, to identify the level of the fuel contained within the tank. The system includes a magnetostrictive sensor (MsS) positioned adjacent to one end of the rod that extends out from the tank. The MsS both generates the guided waves in the rod and detects the reverberating reflected waves within the rod. A permanent magnet may be positioned adjacent the MsS to establish a bias magnetic field in association with the MsS. The system and method detect the waves reverberating in the rod and from the detected signals, measure a degree of wave attenuation. A correlation is made between the measured attenuation change and the actual fuel level within the tank.
    • 描述了利用沿着放置在车辆燃料箱等中的杆传播的纵向导波的装置和方法,以识别容纳在罐内的燃料的水平。 该系统包括一个与从罐延伸出的棒的一端相邻定位的磁致伸缩传感器(MsS)。 MsS都在杆中产生导波并检测杆内的混响反射波。 可以将永磁体定位成与MsS相邻以建立与MsS相关联的偏置磁场。 该系统和方法检测棒中的波浪和检测到的信号,测量波衰减的程度。 在测量的衰减变化和罐内的实际燃料水平之间进行相关。