会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Charged particle beam apparatus
    • 带电粒子束装置
    • US07442942B2
    • 2008-10-28
    • US11509520
    • 2006-08-24
    • Haruo TakahashiToshiaki FujiiYutaka IkkuKouji IwasakiYo Yamamoto
    • Haruo TakahashiToshiaki FujiiYutaka IkkuKouji IwasakiYo Yamamoto
    • H01J37/20
    • H01J37/304G01N1/32H01J2237/31745H01J2237/31749
    • To include a focused ion beam apparatus fabricating a sliced specimen by processing a specimen as well as observing the sliced specimen, a scanning electron microscope observing the slice specimen, a gas-ion beam irradiation apparatus performing finishing processing by irradiating a gas-ion beam onto a surface of the sliced specimen, a specimen stage on which the sliced specimen is fixed and having at least one or more rotation axis, a specimen posture recognition means recognizing positional relation of the sliced specimen with respect to the specimen stage and a specimen stage control means controlling the specimen stage based on a specimen posture recognized by the posture recognition means and an installation angle of the gas-ion beam irradiation apparatus in order to allow an incident angle of the gas-ion beam with respect to the obverse or the reverse of the sliced specimen to be a desired value.
    • 为了包括聚焦离子束装置,通过加工试样和观察切片试样来制造切片样品,观察切片试样的扫描电子显微镜,气相离子束照射装置,通过将气体离子束照射到 切片试样的表面,切片试样固定并具有至少一个以上的旋转轴的试样台,识别切片试样相对于试样台的位置关系的试样姿势识别装置和试样台控制 意味着基于由姿势识别装置识别的样本姿势和气体离子束照射装置的安装角度来控制样本台,以便允许气体离子束相对于正面或反向的入射角 切片样品为期望值。
    • 4. 发明申请
    • Charged particle beam apparatus
    • 带电粒子束装置
    • US20070045560A1
    • 2007-03-01
    • US11509520
    • 2006-08-24
    • Haruo TakahashiToshiaki FujiiYutaka IkkuKouji IwasakiYo Yamamoto
    • Haruo TakahashiToshiaki FujiiYutaka IkkuKouji IwasakiYo Yamamoto
    • H01J37/20G01N1/28
    • H01J37/304G01N1/32H01J2237/31745H01J2237/31749
    • To include a focused ion beam apparatus fabricating a sliced specimen by processing a specimen as well as observing the sliced specimen, a scanning electron microscope observing the slice specimen, a gas-ion beam irradiation apparatus performing finishing processing by irradiating a gas-ion beam onto a surface of the sliced specimen, a specimen stage on which the sliced specimen is fixed and having at least one or more rotation axis, a specimen posture recognition means recognizing positional relation of the sliced specimen with respect to the specimen stage and a specimen stage control means controlling the specimen stage based on a specimen posture recognized by the posture recognition means and an installation angle of the gas-ion beam irradiation apparatus in order to allow an incident angle of the gas-ion beam with respect to the obverse or the reverse of the sliced specimen to be a desired value.
    • 为了包括聚焦离子束装置,通过加工试样和观察切片试样来制造切片样品,观察切片试样的扫描电子显微镜,气相离子束照射装置,通过将气体离子束照射到 切片试样的表面,切片试样固定并具有至少一个以上的旋转轴的试样台,识别切片试样相对于试样台的位置关系的试样姿势识别装置和试样台控制 意味着基于由姿势识别装置识别的样本姿势和气体离子束照射装置的安装角度来控制样本台,以便允许气体离子束相对于正面或反向的入射角 切片样品为期望值。
    • 5. 发明授权
    • Thin specimen producing method and apparatus
    • 薄标本制造方法和装置
    • US07002150B2
    • 2006-02-21
    • US10854868
    • 2004-05-27
    • Kouji IwasakiYutaka Ikku
    • Kouji IwasakiYutaka Ikku
    • G21K7/00
    • G01N1/32H01J2237/3174
    • A thin specimen producing method acquires a work amount in a 1-line scan by an FIB under a predetermined condition, measures a remaining work width of a thin film on an upper surface of a specimen by a microscopic length-measuring function, determines a required number of scan lines of work to reach a predetermined width by calculation, and executes a work to obtain a set thickness. The work amount in a one-line scan by the FIB under the predetermined condition is determined by working the specimen in scans of plural lines, measuring the etched dimension by the microscopic length-measuring function, and calculating an average work amount per one-line scan.
    • 薄标本制作方法通过FIB在预定条件下获取1行扫描中的工作量,通过微观长度测量功能测量样品上表面上的薄膜的剩余工作宽度,确定所需的 通过计算达到预定宽度的扫描线的数量,并执行获得设定厚度的工作。 通过FIB在预定条件下的单行扫描中的工作量通过在多行扫描中进行样品的工作,通过微观长度测量功能测量蚀刻尺寸并计算每行的平均工作量来确定 扫描
    • 6. 发明授权
    • EPL mask processing method and device thereof
    • EPL掩模处理方法及其装置
    • US07060397B2
    • 2006-06-13
    • US10452541
    • 2003-06-02
    • Yo YamamotoKouji IwasakiMasamichi Oi
    • Yo YamamotoKouji IwasakiMasamichi Oi
    • G03F9/00G03C5/00
    • G03F1/20G03F1/74G03F1/82H01J2237/31742Y10S430/143
    • A method of correcting a defective portion of an exposure window in a lithography mask, such as an EPL mask, includes a first step of irradiating a defective portion of the exposure window using a charge particle beam to perform correction processing, and a second step of irradiating another portion of the exposure window with the charged particle beam to eliminate attached matter therefrom, the attached matter consisting of particles ejected from the defective portion of the exposure window as a result of irradiation with the charged particle beam during the first step. The first step and the second step are sequentially repeated N times, wherein N is an integer of 2 or more, to thereby reduce the time needed for eliminating the attached matter.
    • 一种校正诸如EPL掩模的光刻掩模中的曝光窗口的缺陷部分的方法包括:第一步骤,使用电荷粒子束照射曝光窗口的缺陷部分以执行校正处理,第二步骤 用带电粒子束照射曝光窗口的另一部分以从其中除去附着物,所述附着物质由在第一步骤期间被带电粒子束的照射而从曝光窗口的缺陷部分喷出的颗粒组成。 第一步骤和第二步骤依次重复N次,其中N为2以上的整数,从而减少了除去附着物所需的时间。
    • 9. 发明授权
    • Micro cross-section processing method
    • 微截面加工方法
    • US08304721B2
    • 2012-11-06
    • US12708896
    • 2010-02-19
    • Kouji IwasakiTatsuya Adachi
    • Kouji IwasakiTatsuya Adachi
    • H01L21/302H01L21/66H01J37/26H01J37/30
    • G21K5/04G01N23/2202G21K5/10H01J2237/31745H01J2237/31749
    • A micro cross-section processing method includes the steps of determining a linear cross-section estimated position including an observation object on a surface of the sample, irradiating the focused ion beam to the cross-section estimated position perpendicularly to or at a tilt angle to form a cross-section at a position in front of the cross-section estimated position, irradiating the focused ion beam to both ends of the cross-section to form side cuts extending to a position in rear of the cross-section estimated position, irradiating the focused ion beam to a position on the surface of the cross-section and at a position deeper than the observation object to form a bottom cut extending to a position in rear of the cross-section estimated position, irradiating the focused ion beam along from the side cuts to the cross-section estimated position to form wedges connecting to the bottom cut, and applying impact to a region in front of the cross-section estimated position of the sample to cleave the vicinity of the cross-section estimated position between the wedges and form a plane of cleavage.
    • 微型横截面处理方法包括以下步骤:确定包括在样品表面上的观察对象的线性横截面估计位置,将聚焦离子束垂直于或以倾斜角照射到横截面估计位置, 在横截面估计位置前面的位置处形成横截面,将聚焦离子束照射到横截面的两端,以形成延伸到横截面估计位置后方的位置的侧切口 所述聚焦离子束到达所述横截面表面上的位置,并且位于比所述观察对象更深的位置,以形成延伸到所述横截面估计位置的后方的位置的底切口,从而沿着所述聚焦离子束照射 侧面切割到横截面估计位置以形成连接到底切口的楔形,并且对样品的横截面估计位置前面的区域施加冲击 以切割楔块之间的横截面估计位置附近并形成切割平面。