会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Circuit technique to electrically characterize block mask shifts
    • 电路技术,用于表征块掩模移位
    • US08969104B2
    • 2015-03-03
    • US13488532
    • 2012-06-05
    • Emrah AcarAditya BansalDureseti ChidambarraoLiang-Teck PangAmith Singhee
    • Emrah AcarAditya BansalDureseti ChidambarraoLiang-Teck PangAmith Singhee
    • H01L23/34
    • H01L22/34H01L22/14H01L27/0203H01L27/1104H01L2924/0002H01L2924/00
    • A physical test integrated circuit has a plurality of repeating circuit portions corresponding to an integrated circuit design. A first of the portions is fabricated with a nominal block mask location, and additional ones of the portions are deliberately fabricated with predetermined progressive increased offset of the block mask location from the nominal block mask location. For each of the portions, the difference in threshold voltage between a first field effect transistor and a second field effect transistor is determined. The predetermined progressive increased offset of the block mask location is in a direction from the first field effect transistor to the second field effect transistor. The block mask overlay tolerance is determined at a value of the progressive increased offset corresponding to an inflection of the difference in threshold voltage from a zero difference. A method for on-chip monitoring, and corresponding circuits, are also disclosed.
    • 物理测试集成电路具有对应于集成电路设计的多个重复电路部分。 这些部分中的第一部分被制造成具有标称块掩模位置,并且附加的部分被有意地用块掩模位置与标称块掩模位置的预定逐渐增加的偏移来制造。 对于每个部分,确定第一场效应晶体管和第二场效应晶体管之间的阈值电压差。 块掩模位置的预定逐渐增加的偏移在从第一场效应晶体管到第二场效应晶体管的方向上。 在与零差异的阈值电压的差的变化相对应的逐行增加偏移的值处确定块掩模覆盖公差。 还公开了用于片上监视的方法和相应的电路。
    • 4. 发明授权
    • Silicon nanotube MOSFET
    • 硅纳米管MOSFET
    • US08871576B2
    • 2014-10-28
    • US13036292
    • 2011-02-28
    • Daniel TekleabHung H. TranJeffrey W. SleightDureseti Chidambarrao
    • Daniel TekleabHung H. TranJeffrey W. SleightDureseti Chidambarrao
    • H01L29/49H01L29/06B82Y10/00H01L29/775H01L29/66H01L29/78
    • H01L29/78B82Y10/00H01L29/0676H01L29/66439H01L29/66666H01L29/775H01L29/7827
    • A nanotubular MOSFET device and a method of fabricating the same are used to extend device scaling roadmap while maintaining good short channel effects and providing competitive drive current. The nanotubular MOSFET device includes a concentric tubular inner and outer gate separated from each other by a tubular shaped epitaxially grown silicon layer, and a source and drain respectively separated by spacers surrounding the tubular inner and outer gates. The method of forming the nanotubular MOSFET device includes: forming on a substrate a cylindrical shaped Si layer; forming an outer gate surrounding the cylindrical Si layer and positioned between a bottom spacer and a top spacer; growing a silicon epitaxial layer on the top spacer adjacent to a portion of the cylindrical shaped Si layer; etching an inner portion of the cylindrical shaped Si forming a hollow cylinder; forming an inner spacer at the bottom of the inner cylinder; forming an inner gate by filling a portion of the hollow cylinder; forming a sidewall spacer adjacent to the inner gate; and etching a deep trench for accessing and contacting the outer gate and drain.
    • 纳米管MOSFET器件及其制造方法用于扩展器件缩放路线图,同时保持良好的短沟道效应并提供有竞争力的驱动电流。 纳米管MOSFET器件包括通过管状外延生长硅层彼此分离的同心管状内部和外部栅极,以及分别由围绕管状内部和外部门的间隔开的源极和漏极。 形成纳米管MOSFET器件的方法包括:在衬底上形成圆柱形的Si层; 形成围绕圆柱形Si层并位于底部间隔件和顶部间隔件之间的外部门; 在与圆柱形Si层的一部分相邻的顶部间隔上生长硅外延层; 蚀刻形成中空圆筒的圆柱形Si的内部; 在内筒的底部形成内隔板; 通过填充中空圆筒的一部分形成内门; 形成邻近所述内门的侧壁间隔物; 并蚀刻用于访问和接触外部栅极和漏极的深沟槽。
    • 10. 发明授权
    • Methodology for improving device performance prediction from effects of active area corner rounding
    • 从活动区域四舍五入的角度提高设备性能预测的方法
    • US08296691B2
    • 2012-10-23
    • US11971015
    • 2008-01-08
    • Dureseti ChidambarraoGerald M. DavidsonPaul A. HydeJudith H. McCullenShreesh Narasimha
    • Dureseti ChidambarraoGerald M. DavidsonPaul A. HydeJudith H. McCullenShreesh Narasimha
    • G06F17/50G06F9/45G06G7/48
    • G06F17/5036
    • A system and method for modeling a semiconductor transistor device structure having a conductive line feature of a designed length connected to a gate of a transistor device in a circuit to be modeled, the transistor including an active device (RX) area over which the gate is formed and over which the conductive line feature extends. The method includes providing an analytical model representation including a function for modeling a lithographic flare effect impacting the active device area width; and, from the modeling function, relating an effective change in active device area width (deltaW adder) as a function of a distance from a defined edge of the RX area. Then, transistor model parameter values in a transistor compact model for the device are updated to include deltaW adder values to be added to a built-in deltaW value. A netlist used in a simulation includes the deltaW adder values to more accurately describe the characteristics of the transistor device being modeled including modeling of lithographic corner rounding effect on transistor device parametrics.
    • 一种用于建模半导体晶体管器件结构的系统和方法,所述半导体晶体管器件结构具有设计长度的导线特征,所述导线特征与待建模的电路中的晶体管器件的栅极连接,所述晶体管包括有源器件(RX) 形成并且其上延伸有导线特征。 该方法包括提供分析模型表示,其包括用于建模影响有源器件区域宽度的光刻火炬效应的功能; 并且从建模功能将有源器件区域宽度(deltaW加法器)的有效变化与距离RX区域的限定边缘的距离的函数相关联。 然后,器件的晶体管紧凑型模型中的晶体管模型参数值被更新为包括要添加到内置deltaW值的ΔW加法器值。 在模拟中使用的网表包括deltaW加法器值,以更精确地描述被建模的晶体管器件的特性,包括对晶体管器件参数的光刻拐角舍入效应的建模。