会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Isolation structure having implanted silicon atoms at the top corner of the isolation trench filling vacancies and interstitial sites
    • 隔离结构在隔离槽的顶角处注入硅原子填充空位和间隙位置
    • US06979878B1
    • 2005-12-27
    • US09217213
    • 1998-12-21
    • Mark I. GardnerH. Jim FulfordDerick J. Wristers
    • Mark I. GardnerH. Jim FulfordDerick J. Wristers
    • H01L21/762H01L29/36
    • H01L21/76237
    • A method for isolating a first active region from a second active region, both of which are configured within a semiconductor substrate. The method comprises forming a dielectric masking layer above a semiconductor substrate. An opening is then formed through the masking layer. A pair of dielectric spacers are formed upon the sidewalls of the masking layer within the opening. A trench is then etched in the semiconductor substrate between the dielectric spacers. A first dielectric layer is then thermally grown on the walls and base of the trench. A CVD oxide is deposited into the trench and processed such that the upper surface of the CVD oxide is commensurate with the substrate surface. Portions of the spacers are also removed such that the thickness of the spacers is between about 0 to 200 Å. Silicon atoms and/or barrier atoms, such as nitrogen atoms, are then implanted ino regions of the active areas in close proximity to the trench isolation structure.
    • 一种用于将第一有源区与第二有源区隔离的方法,二者均配置在半导体衬底内。 该方法包括在半导体衬底上形成电介质掩模层。 然后通过掩模层形成开口。 在开口内的掩模层的侧壁上形成一对电介质隔离物。 然后在电介质间隔物之间​​的半导体衬底中蚀刻沟槽。 然后在沟槽的壁和基底上热生长第一介电层。 将CVD氧化物沉积到沟槽中并进行处理,使得CVD氧化物的上表面与衬底表面相当。 间隔物的一部分也被去除,使得间隔物的厚度在约0至200埃之间。 然后将硅原子和/或势垒原子(例如氮原子)注入非常靠近沟槽隔离结构的有源区的多个区域中。
    • 2. 发明授权
    • CMOS integrated circuit and method for implanting NMOS transistor areas prior to implanting PMOS transistor areas to optimize the thermal diffusivity thereof
    • CMOS集成电路和用于在注入PMOS晶体管区域之前注入NMOS晶体管区域以优化其热扩散率的方法
    • US06258646B1
    • 2001-07-10
    • US09149631
    • 1998-09-08
    • H. Jim Fulford, Jr.Mark I. GardnerDerick J. Wristers
    • H. Jim Fulford, Jr.Mark I. GardnerDerick J. Wristers
    • H01L218238
    • H01L27/092H01L21/823814Y10S257/90
    • A transistor and a transistor fabrication method for forming an LDD structure in which the n-type dopants associated with an n-channel transistor are formed prior to the formation of the p-type dopants is presented. The n-type source/drain and LDD implants generally require higher activation energy (thermal anneal) than the p-type source/drain and LDD implants. The n-type arsenic source/drain implant, which has the lowest diffusivity and requires the highest temperature anneal, is performed first in the LDD process formation. Performing such a high temperature anneal first ensures minimum additional migration of subsequent, more mobile implants. Mobile implants associated with lighter and less dense implant species are prevalent in LDD areas near the channel perimeter. The likelihood of those implants moving into the channel is lessened by tailoring subsequent anneal steps to temperatures less than the source/drain anneal step.
    • 提出一种用于形成LDD结构的晶体管和晶体管制造方法,其中在形成p型掺杂剂之前形成与n沟道晶体管相关联的n型掺杂剂。 n型源极/漏极和LDD植入物通常需要比p型源极/漏极和LDD植入物更高的活化能(热退火)。 首先在LDD工艺形成中执行具有最低扩散率并且需要最高温度退火的n型砷源/漏极注入。 首先进行这样的高温退火可确保随后的更多移动式植入物的最小额外迁移。 与更轻和较不密集的种植体物种相关的移植植入物在通道周边附近的LDD区域是普遍的。 通过将后续退火步骤调整到低于源极/漏极退火步骤的温度,使得这些植入物进入通道的可能性降低。
    • 7. 发明授权
    • Multiple spacer formation/removal technique for forming a graded junction
    • 用于形成渐变结的多间隔物形成/去除技术
    • US6104063A
    • 2000-08-15
    • US942998
    • 1997-10-02
    • H. Jim Fulford, Jr.Mark I. GardnerDerick J. Wristers
    • H. Jim Fulford, Jr.Mark I. GardnerDerick J. Wristers
    • H01L21/336H01L29/78H01L29/76H01L27/088
    • H01L29/66492H01L29/6659H01L29/7833Y10S257/90
    • A transistor and a transistor fabrication method are presented where a sequence of spacers are formed and partially removed upon sidewall surfaces of the gate conductor to produce a graded junction having a relatively smooth doping profile. The spacers include removable and non-removable structures formed on the sidewall surfaces. The adjacent structures have dissimilar etch characteristics compared to each other and compared to the gate conductor. A first dopant (MDD dopant) and a second dopant (source/drain dopant) are implanted into the semiconductor substrate after the respective formation of the removable structure and the non-removable structure. A third dopant (LDD dopant) is implanted into the semiconductor substrate after the removable layer is removed from between the gate conductor and the non-removable structure (spacer). As a result a graded junction is created having higher concentration regions formed outside of lightly concentration regions, relative to the channel area. Such a doping profile provides superior protection against the hot-carrier effect compared to the traditional LDD structure. The smoother the doping profile, the more gradual the voltage drop across the channel/drain junction. A more gradual voltage drop gives rise to a smaller electric field and reduces the hot-carrier effect. Furthermore, the MDD and source/drain implants are performed first, prior to the LDD implant. This allows high-temperature thermal anneals to be performed first, followed by lower temperature anneals second.
    • 提出了晶体管和晶体管制造方法,其中在栅极导体的侧壁表面上形成并部分地去除间隔物序列,以产生具有相对平滑的掺杂分布的梯度结。 间隔件包括形成在侧壁表面上的可移除和不可移除的结构。 相邻的结构具有彼此相比的不同的蚀刻特性并且与栅极导体相比较。 在可移除结构和不可移除结构的相应形成之后,将第一掺杂剂(MDD掺杂剂)和第二掺杂剂(源极/漏极掺杂剂)注入到半导体衬底中。 在可移除层从栅极导体和不可移除结构(间隔物)之间移除之后,将第三掺杂剂(LDD掺杂剂)注入到半导体衬底中。 结果,相对于通道面积产生了在轻微浓度区域之外形成的具有较高浓度区域的分级结。 与传统的LDD结构相比,这种掺杂分布提供了优于热载体效应的保护。 掺杂曲线越平滑,通道/漏极结上的电压降越低。 更加缓慢的电压降会导致较小的电场并降低热载流子效应。 此外,在LDD植入之前,首先执行MDD和源/漏植入。 这允许首先执行高温热退火,其次是较低的温度退火。
    • 8. 发明授权
    • Method of forming a local interconnect by conductive layer patterning
    • 通过导电层图案形成局部互连的方法
    • US6096639A
    • 2000-08-01
    • US056835
    • 1998-04-07
    • Robert DawsonMark I. GardnerFrederick N. HauseH. Jim Fulford, Jr.Mark W. MichaelBradley T. MooreDerick J. Wristers
    • Robert DawsonMark I. GardnerFrederick N. HauseH. Jim Fulford, Jr.Mark W. MichaelBradley T. MooreDerick J. Wristers
    • H01L21/768H01L21/4763
    • H01L21/76895
    • A local interconnect (LI) structure is formed by forming a silicide layer in selected regions of a semiconductor structure then depositing an essentially uniform layer of transition or refractory metal overlying the semiconductor structure. The metal local interconnect is deposited without forming in intermediate insulating layer between the silicide and metal layers to define contact openings or vias. In some embodiments, titanium a suitable metal for formation of the local interconnect. Suitable selected regions for silicide layer formation include, for example, silicided source/drain (S/D) regions and silicided gate contact regions. The silicided regions form uniform structures for electrical coupling to underlying doped regions that are parts of one or more semiconductor devices. In integrated circuits in which an etchstop layer is desired for the patterning of the metal film, a first optional insulating layer is deposited prior to deposition of the metal film. In one example, the insulating layer is a silicon dioxide (oxide) layer that is typically less than 10 nm in thickness.
    • 通过在半导体结构的选定区域中形成硅化物层然后沉积覆盖在半导体结构上的基本均匀的过渡或难熔金属层来形成局部互连(LI)结构。 在硅化物和金属层之间的中间绝缘层中沉积金属局部互连以限定接触开口或通孔。 在一些实施例中,钛是用于形成局部互连的合适金属。 用于硅化物层形成的合适的选定区域包括例如硅化源极/漏极(S / D)区域和硅化物栅极接触区域。 硅化区域形成均匀的结构,用于电耦合到作为一个或多个半导体器件的部分的下掺杂区域。 在需要蚀刻阻挡层用于图案化金属膜的集成电路中,在沉积金属膜之前沉积第一可选绝缘层。 在一个示例中,绝缘层是通常小于10nm厚度的二氧化硅(氧化物)层。
    • 10. 发明授权
    • Self aligned method for differential oxidation rate at shallow trench
isolation edge
    • 浅沟槽隔离边缘微分氧化率自对准方法
    • US6040607A
    • 2000-03-21
    • US928607
    • 1998-02-23
    • Derick J. WristersH. Jim FulfordMark I. Gardner
    • Derick J. WristersH. Jim FulfordMark I. Gardner
    • H01L21/762H01L27/02H01L29/68
    • H01L21/76237
    • A semiconductor process in which at least one isolation structure is formed in a semiconductor substrate is provided. An oxygen bearing species is introduced into portions of the semiconductor substrate proximal to the isolation structure, preferably through the use of an ion implantation into a tilted or inclined substrate. A gate dielectric layer is then formed on an upper surface of the semiconductor substrate. The presence of the oxygen bearing species in the proximal portions of the semiconductor substrate increases the oxidation rate of the proximal portions relative to the oxidation rate of portions of the substrate that are distal to the isolation structures. In this manner, a first thickness of the gate dielectric over the proximal portions of the semiconductor substrate is greater than a second thickness of the gate oxide layer over remaining portions of the semiconductor substrate. The increased oxide thickness adjacent to the discontinuities of the isolation trench reduces the electric field across the oxide.
    • 提供其中在半导体衬底中形成至少一个隔离结构的半导体工艺。 氧离子种类被引入半导体衬底的靠近隔离结构的部分,优选通过使用离子注入到倾斜或倾斜的衬底中。 然后在半导体衬底的上表面上形成栅介质层。 在半导体衬底的近端部分存在含氧物质增加了近端部分相对于远离隔离结构的衬底部分的氧化速率的氧化速率。 以这种方式,在半导体衬底的近端部分上的栅极电介质的第一厚度大于半导体衬底的剩余部分上的栅极氧化物层的第二厚度。 与隔离沟槽的不连续性相邻的增加的氧化物厚度减小了跨过氧化物的电场。