会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Growth of P type Group III-V compound semiconductor on Group IV
semiconductor substrate
    • 在IV族半导体衬底上P型III-V族化合物半导体的生长
    • US5141893A
    • 1992-08-25
    • US658058
    • 1991-02-20
    • Chris R. ItoDavid McIntyreRobert KaliskiMilton Feng
    • Chris R. ItoDavid McIntyreRobert KaliskiMilton Feng
    • H01L21/20H01L21/82
    • H01L21/82H01L21/02395H01L21/02433H01L21/02463H01L21/02546H01L21/0262
    • `Unintentionally` doped P type GaAs is grown on silicon by a metal organic chemical vapor deposition process in which the molecular ratio of arsenic to gallium in the growth ambient is reduced to a value that is sufficiently low to cause the creation of donor (As) site vacancies in the grown GaAs layer, which become occupied by acceptor (carbon) atoms in the metal organic compound, thereby resulting in the formation of a buffer GaAs layer having a P type majority carrier characteristic. Preferably, the silicon substrate has its growth surface inclined from the [100] plane toward the [011] direction is initially subjected to an MOCVD process (e.g. trimethyl gallium, arsine chemical vapor deposition) at a reduced temperature (e.g. 425.degree. C.) and at atmospheric pressure, to form a thin (400 Angstroms) nucleation layer. During this growth step the Group V/Group III mole ratio (of arsenic to gallium) is maintained at an intermediate value. The temperature is then ramped to 630.degree. C. and gas content adjusted to reduce the V/III mole ratio to a value less than 5.0, so as to grow a buffer layer of GaAs is grown on the nucleation layer. Because the molecular ratio of arsenic to gallium in the metal organic/arsine ambient is at a substantially reduced value, the resulting GaAs buffer layer tends to be depleted of arsenic atoms at numerous crystal sites, which allows for the substitution of acceptor (carbon) atoms from the metal organic compound, so that the buffer GaAs layer is P type.
    • 通过金属有机化学气相沉积工艺在硅上生长“无意的”掺杂的P型GaAs,其中生长环境中砷与镓的分子比例降低到足够低的值,导致供体(As)的产生, 在金属有机化合物中被受体(碳)原子占据的生长的GaAs层中的位置空位,从而形成具有P型多数载流子特性的缓冲GaAs层。 优选地,硅衬底的其生长表面从[100]面朝向[011]方向倾斜,最初在降低的温度(例如425℃)下进行MOCVD工艺(例如三甲基镓,胂化学气相沉积) 并在大气压下形成薄(400埃)成核层。 在该生长步骤期间,V族/ III族摩尔比(砷与镓)保持在中间值。 然后将温度升至630℃,调节气体含量以将V / III摩尔比降低至小于5.0的值,以便在成核层上生长GaAs缓冲层。 因为在金属有机/砷酸环境中砷与镓的分子比值基本上是降低的值,所以得到的GaAs缓冲层倾向于耗尽多个晶体位置的砷原子,这允许取代受体(碳原子) 从金属有机化合物,使得缓冲GaAs层为P型。
    • 3. 发明申请
    • High speed light emitting semiconductor methods and devices
    • 高速发光半导体的方法和装置
    • US20120249009A1
    • 2012-10-04
    • US13506626
    • 2012-05-03
    • Gabriel WalterMilton FengNick Holonyak, JR.Han Wui ThenChao-Hsin Wu
    • Gabriel WalterMilton FengNick Holonyak, JR.Han Wui ThenChao-Hsin Wu
    • H05B37/00H01L33/62H01L33/60
    • H01S5/06203B82Y20/00H01L33/0016H01L33/30H01L33/38H01S5/06213H01S5/183H01S5/1835H01S5/34313
    • A method including: providing a transistor structure that includes a base region of first semiconductor type between semiconductor emitter and collector regions of second semiconductor type; providing, in the base region, at least one region exhibiting quantum size effects; providing emitter, base, and collector electrodes respectively coupled with emitter, base, and collector regions; applying electrical signals, including a high frequency electrical signal component, with respect to the emitter, base, and collector electrodes to produce output spontaneous light emission from the base region, aided by the quantum size region, the output spontaneous light emission including a high frequency optical signal component representative of the high frequency electrical signal component; providing an optical cavity for the light emission in the region between the base and emitter electrodes; and scaling the lateral dimensions of the optical cavity to control the speed of light emission response to the high frequency electrical signal component.
    • 一种方法,包括:提供晶体管结构,所述晶体管结构包括在半导体发射极和第二半导体类型的集电极区之间的第一半导体类型的基极区; 在碱性区域中提供至少一个呈现量子效应的区域; 提供分别与发射极,基极和集电极区耦合的发射极,基极和集电极电极; 对发射极,基极和集电极施加包括高频电信号分量的电信号,以在量子尺寸区域辅助下产生从基极区域输出的自发光发射,包括高频的输出自发光发射 光信号分量代表高频电信号分量; 在基极和发射极之间的区域中提供用于发光的光学腔; 以及缩放光腔的横向尺寸以控制对高频电信号分量的发光响应的速度。
    • 8. 发明授权
    • High cycle deflection beam MEMS devices
    • 高周期偏转光束MEMS器件
    • US06998946B2
    • 2006-02-14
    • US10245790
    • 2002-09-17
    • Milton FengRichard Chan
    • Milton FengRichard Chan
    • H01H51/22
    • H01H59/0009H01H2059/0072H01P1/127
    • A high life cycle MEMS device is provided by the invention. The inventors have recognized that the deflection beam or deflection beams of an MEMS shunt switch are a failure point in need of improvement. In an aspect of the invention, at least a portion of the signals in the grounded state of an MEMS shunt switch are bypassed to ground on a path that avoids the deflection beam(s) supporting the movable pad. In a preferred embodiment, ground posts are disposed to contact the movable pad in an actuated position and establish a signal path from a signal line to ground. The inventors have also recognized that a shape of deflection beams near their anchor point contributes to failures. In another preferred aspect of the invention, an anchoring portion of the deflection beam or deflection beams is generally coplanar with the remaining portion of the deflection beam(s). An additional post beneath the anchoring portion of the deflection beam(s) permits deflection beam(s) lacking any turns that form a weak structural point.
    • 本发明提供了高寿命的MEMS器件。 本发明人认识到MEMS分流开关的偏转光束或偏转光束是需要改进的失效点。 在本发明的一个方面中,在MEMS分流开关的接地状态下的至少一部分信号在路径上被旁路到地,以避免支撑可移动焊盘的偏转光束。 在优选实施例中,接地柱设置成在致动位置接触可移动垫,并建立从信号线到地面的信号路径。 本发明人还认识到,靠近它们的锚点的偏转束的形状有助于失效。 在本发明的另一优选方面,偏转光束或偏转光束的锚固部分通常与偏转光束的剩余部分共面。 在偏转光束的锚固部分下面的附加柱允许缺乏形成弱结构点的任何匝的偏转光束。
    • 10. 发明授权
    • Light emitting and lasing semiconductor methods and devices
    • 发光和发光半导体的方法和装置
    • US08509274B2
    • 2013-08-13
    • US12799080
    • 2010-04-16
    • Gabriel WalterNick Holonyak, Jr.Milton FengChao-Hsin Wu
    • Gabriel WalterNick Holonyak, Jr.Milton FengChao-Hsin Wu
    • H01S3/00
    • H01S5/34B82Y20/00H01L33/0016H01L33/06H01L33/30H01S5/0425H01S5/06203H01S5/06213H01S5/18311H01S5/1835H01S5/34313
    • A method for producing light emission from a two terminal semiconductor device with improved efficiency, includes the following steps: providing a layered semiconductor structure including a semiconductor drain region comprising at least one drain layer, a semiconductor base region disposed on the drain region and including at least one base layer, and a semiconductor emitter region disposed on a portion of the base region and comprising an emitter mesa that includes at least one emitter layer; providing, in the base region, at least one region exhibiting quantum size effects; providing a base/drain electrode having a first portion on an exposed surface of the base region and a further portion coupled with the drain region, and providing an emitter electrode on the surface of the emitter region; applying signals with respect to the base/drain and emitter electrodes to obtain light emission from the base region; and configuring the base/drain and emitter electrodes for substantial uniformity of voltage distribution in the region therebetween.
    • 一种从提高效率的二端子半导体器件产生发光的方法,包括以下步骤:提供包括半导体漏极区域的分层半导体结构,该半导体漏极区域包括至少一个漏极层,设置在漏极区域上的半导体基极区域, 至少一个基极层,以及设置在所述基极区域的一部分上并且包括发射极台面的半导体发射极区域,所述发射极台面包括至少一个发射极层; 在碱性区域中提供至少一个呈现量子效应的区域; 提供在所述基极区域的暴露表面上具有第一部分的基极/漏电极,以及与所述漏极区域耦合的另一部分,并且在所述发射极区域的表面上提供发射极; 施加相对于基极/漏极和发射极电极的信号以获得从基极区域发出的光; 以及在其间的区域中配置基极/漏极和发射极用于电压分布的实质均匀性。