会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Method for producing semiconductor crystal
    • 半导体晶体的制造方法
    • US06964705B2
    • 2005-11-15
    • US10620970
    • 2003-07-17
    • Seiji NagaiAkira KojimaKazuyoshi Tomita
    • Seiji NagaiAkira KojimaKazuyoshi Tomita
    • C30B29/40C30B25/02C30B25/18H01L21/20H01L21/205H01L21/324H01L33/12H01L33/32C30B25/12C30B25/14
    • C30B29/406C30B25/02C30B25/18C30B29/403H01L21/0237H01L21/0242H01L21/02458H01L21/02502H01L21/0254H01L21/0262H01L21/02639H01L21/0265
    • A seed layer as a laminate of a GaN layer (second seed layer) and an AlN buffer layer (first seed layer) is formed on a sapphire substrate. A front surface thereof is etched in the form of stripes with a stripe width (seed width) of about 5 μm, a wing width of about 15 μm and a depth of about 0.5 μm. As a result, mesa portions each shaped like nearly a rectangle in sectional view are formed. Non-etched portions each having the seed multilayer as its flat top portion are arranged at arrangement intervals of L≈20 μm. Part of the sapphire substrate is exposed in trough portions of wings. The ratio S/W of the seed width to the wing width is preferably selected to be in a range of from about ⅓ to about ⅕. Then, a semiconductor crystal A is grown to obtain a thickness of not smaller than 50 μm. The semiconductor crystal is separated from the starting substrate to thereby obtain a high-quality single crystal independent of the starting substrate. When a halide vapor phase epitaxy method is used in the condition that the V/III ratio is selected to be in a range of from 30 to 80, both inclusively, a semiconductor crystal free from cracks can be obtained.
    • 在蓝宝石衬底上形成作为GaN层(第二种子层)和AlN缓冲层(第一种子层)的叠层的种子层。 其前表面以条纹宽度(种子宽度)约5μm,翼宽度约15μm,深度约0.5μm的条纹形式蚀刻。 结果,形成了截面图中形状为大致矩形的台面部。 每个具有种子多层作为其平坦顶部的非蚀刻部分以L≈20μm的排列间隔布置。 蓝宝石衬底的一部分暴露在机翼的槽部分。 种子宽度与机翼宽度的比率S / W优选选择在约1/3至约1/5的范围内。 然后,生长半导体晶体A以获得不小于50μm的厚度。 半导体晶体与起始衬底分离,从而获得独立于起始衬底的高质量单晶。 在V / III比选择在30〜80的范围内的情况下使用卤化物气相外延法的情况下,均可以获得不含裂纹的半导体结晶。
    • 3. 发明授权
    • Ultra-high density memory device
    • 超高密度存储器件
    • US5940314A
    • 1999-08-17
    • US9304
    • 1998-01-20
    • Motofumi SuzukiTakeshi OhwakiYasunori TagaHiroshi TadanoTestu KachiYuichi TanakaKazuyoshi Tomita
    • Motofumi SuzukiTakeshi OhwakiYasunori TagaHiroshi TadanoTestu KachiYuichi TanakaKazuyoshi Tomita
    • G11B11/00G11B5/00G11B5/74G11B9/00G11B9/14G11B13/04H01L43/08G11C11/42
    • B82Y10/00G11B5/00G11B5/74G11B9/14G11B9/1409G11B13/04Y10S977/947
    • A ultra-high density memory device utilizing a photoinductive ferromagnetic thin film. A photoinductive ferromagnetic thin film is formed on a GaAs substrate, and a tip is arranged so as to face the photoinductive ferromagnetic thin film. The GaAs substrate is disposed on an xyz scanner, and the three-dimensional positional relationship between the GaAs substrate and the tip is changed by the xyz scanner. Blue light is radiated onto the thin film in order to make the magnetization orientation of molecules uniform. Through application of a relatively high voltage, a relatively large current is caused to flow between the tip and the substrate, so that randomization of the magnetization orientation of molecules of the photoinductive ferromagnetic thin film; i.e., writing operation is carried out. Also, through uniform radiation of circular polarized light onto the GaAs substrate and application of a relatively low voltage, tunneling current is caused to flow between the tip and the substrate, which tunneling current changes in accordance with the magnetization orientation of molecules of the photoinductive ferromagnetic thin film. Through detection of the tunneling current, the magnetization orientation of molecules of the photoinductive ferromagnetic thin film can be detected.
    • 一种利用感光铁磁性薄膜的超高密度存储器件。 在GaAs衬底上形成感光铁磁性薄膜,并且将顶端配置为面对感光性铁磁性薄膜。 GaAs衬底设置在xyz扫描器上,并且通过xyz扫描器改变GaAs衬底和尖端之间的三维位置关系。 将蓝光照射到薄膜上,以使分子的磁化取向均匀。 通过施加相当高的电压,使得相对较大的电流在尖端和衬底之间流动,从而使感光铁磁性薄膜的分子的磁化取向随机化; 即执行写入操作。 此外,通过将均匀的圆偏振光辐射到GaAs衬底上并施加相对低的电压,引起隧道电流在尖端和衬底之间流动,该隧道电流根据感光铁磁体的分子的磁化方向而改变 薄膜。 通过检测隧道电流,可以检测感光铁磁性薄膜的分子的磁化取向。
    • 5. 发明授权
    • Electrode and Group III nitride-based compound semiconductor light-emitting device having the electrode
    • 具有电极的电极和III族氮化物系化合物半导体发光元件
    • US07646036B2
    • 2010-01-12
    • US12068247
    • 2008-02-04
    • Takahiro KozawaKazuyoshi TomitaToshiya UemuraShigemi Horiuchi
    • Takahiro KozawaKazuyoshi TomitaToshiya UemuraShigemi Horiuchi
    • H01L33/00
    • H01L33/405H01L33/32H01L33/42
    • An object of the invention is to prevent migration of silver contained in an electrode of a Group III nitride-based compound semiconductor light-emitting device. A positive electrode is formed on a p-type layer. In the positive electrode, an ITO light-transmitting electrode layer, a silver alloy reflecting electrode layer, a diffusion-preventing layer in which a Ti layer and a Pt layer are stacked, and a gold thick-film electrode are sequentially stacked on the p-type layer. The reflecting electrode layer made of a silver alloy contains palladium (Pd) and copper (Cu) as additives and also contains oxygen (O). By virtue of this structure, migration of silver from the silver alloy reflecting electrode layer and blackening of the interface between the silver alloy layer and the ITO light-transmitting electrode layer disposed thereunder are prevented, whereby light extraction efficiency can be enhanced.
    • 本发明的目的是防止在III族氮化物系化合物半导体发光元件的电极中含有的银的迁移。 正电极形成在p型层上。 在正极中,将ITO透光电极层,银合金反射电极层,层叠有Ti层和Pt层的扩散防止层和金厚膜电极依次层叠在p 型层。 由银合金制成的反射电极层包含钯(Pd)和铜(Cu)作为添加剂,并且还含有氧(O)。 由于这种结构,防止银从银合金反射电极层的迁移以及布置在其上的银合金层和ITO透光电极层之间的界面变黑,从而可以提高光提取效率。
    • 9. 发明授权
    • Group III nitride compound semiconductor element and method for producing the same
    • III族氮化物化合物半导体元件及其制造方法
    • US06716655B2
    • 2004-04-06
    • US10160288
    • 2002-06-04
    • Seiji NagaiMasayoshi KoikeKazuyoshi Tomita
    • Seiji NagaiMasayoshi KoikeKazuyoshi Tomita
    • H01L3304
    • C30B23/02C30B25/02C30B25/18C30B29/403C30B29/406H01L21/02381H01L21/02433H01L21/02458H01L21/0254H01L21/02639H01L33/007
    • An object of the invention is to produce, at high efficiency, semiconductor elements which are formed of a high-quality crystalline semiconductor having no cracks and a low dislocation density and which have excellent characteristics. Specifically, a mask formed from SiO2 film is provided on the Si(111) plane of an n-type silicon substrate, and a window portion (crystal growth region) in the shape of an equilateral triangle having a side of approximately 300 &mgr;m is formed through the mask. The three sides of the equilateral triangle are composed of three edges; each edge defined by the (111) plane and another crystal plane that is cleavable. Subsequently, a multi-layer structure of semiconductor crystals in an LED is formed through crystal growth of a Group III nitride compound semiconductor. Thus, limiting the area of one crystal growth region to a considerably small area weakens a stress applied to a semiconductor layer, thereby readily producing semiconductor elements having excellent crystallinity. In addition, semiconductor elements can be arranged in a semiconductor wafer at high packing density without loss, and each side of these semiconductor elements can be readily arranged in a line on a semiconductor wafer, thereby enhancing quality, yield, productivity, etc. of semiconductor elements.
    • 本发明的目的是高效率地制造由没有裂纹和位错密度低且具有优异特性的高品质结晶半导体形成的半导体元件。 具体地,在n型硅衬底的Si(111)面上设置由SiO 2膜形成的掩模,并且形成具有约300μm侧面的等边三角形形状的窗口部分(晶体生长区域) 通过面具。 等边三角形的三面由三边组成, 每个边缘由(111)面和另一个可切割的晶体平面限定。 随后,通过III族氮化物化合物半导体的晶体生长,形成LED中的半导体晶体的多层结构。 因此,将一个晶体生长区域的面积限制在相当小的面积上,削弱施加到半导体层的应力,从而容易地制造具有优异结晶度的半导体元件。 此外,半导体元件可以以高封装密度无损耗地布置在半导体晶片中,并且这些半导体元件的每一侧可以容易地布置在半导体晶片上的线上,从而提高半导体的质量,产量,生产率等 元素。