会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • KEYED HUMAN INTERACTIVE PROOF PLAYERS
    • 关键人类交互式证明球员
    • US20110320822A1
    • 2011-12-29
    • US12822181
    • 2010-06-24
    • Jesper B. LindDarko KirovskiChristopher A. Meek
    • Jesper B. LindDarko KirovskiChristopher A. Meek
    • G06F21/00
    • G06F21/316G06F2221/2103
    • A human interactive puzzle (HIP) authorization architecture where keyed and animated puzzles are executed by HIP players which are distinct and obfuscated to the point where breaking a single player is a relatively costly operation. A key is created in response to a request for a service, a HIP player is created based on the key, and a small installation executable is created that expands during installation to produce a computationally expensive data structure on the client relative to verification of the solution at the server. Thus, copying of the player or relay of the puzzle to a third system requires more time than allowed to receive the solution at the server.
    • 一个人类交互式拼图(HIP)授权架构,其中键盘和动画拼图由HIP玩家执行,这些玩家是不同的和模糊的,打破单个玩家是一个相对昂贵的操作。 响应于对服务的请求而创建密钥,基于密钥创建HIP播放器,并且创建在安装期间扩展的小型安装可执行文件以在客户端上产生计算上昂贵的数据结构,以相对于解决方案的验证 在服务器上 因此,将拼图的播放器或继电器复制到第三系统需要比允许在服务器处接收解决方案更多的时间。
    • 4. 发明授权
    • Keyed human interactive proof players
    • 关键的人类互动证明球员
    • US08984292B2
    • 2015-03-17
    • US12822181
    • 2010-06-24
    • Jesper B. LindDarko KirovskiChristopher A. Meek
    • Jesper B. LindDarko KirovskiChristopher A. Meek
    • G06F21/00G06F21/31
    • G06F21/316G06F2221/2103
    • A human interactive puzzle (HIP) authorization architecture where keyed and animated puzzles are executed by HIP players which are distinct and obfuscated to the point where breaking a single player is a relatively costly operation. A key is created in response to a request for a service, a HIP player is created based on the key, and a small installation executable is created that expands during installation to produce a computationally expensive data structure on the client relative to verification of the solution at the server. Thus, copying of the player or relay of the puzzle to a third system requires more time than allowed to receive the solution at the server.
    • 一个人类交互式拼图(HIP)授权架构,其中键盘和动画拼图由HIP玩家执行,这些玩家是不同的和模糊的,打破单个玩家是一个相对昂贵的操作。 响应于对服务的请求而创建密钥,基于密钥创建HIP播放器,并且创建在安装期间扩展的小型安装可执行文件以在客户端上产生计算上昂贵的数据结构,以相对于解决方案的验证 在服务器上 因此,将拼图的播放器或继电器复制到第三系统需要比允许在服务器处接收解决方案更多的时间。
    • 6. 发明授权
    • Quality based pricing and ranking for online ads
    • 基于质量的定价和在线广告的排名
    • US08527339B2
    • 2013-09-03
    • US12146473
    • 2008-06-26
    • Asela J. GunawardanaJody D. BiggsJesper B. LindChristopher A. Meek
    • Asela J. GunawardanaJody D. BiggsJesper B. LindChristopher A. Meek
    • G06Q99/00
    • G06Q30/02G06Q30/0243
    • A “Quality-Based Ad Pricer” prices ads as a function of how users respond to a particular page and/or domain to which they are sent by an online advertisement. User experience is improved by ensuring that advertisements that are more relevant to a user are priced less than an ads which are less relevant to the user. In particular, a quality factor for each ad is determined as a property of the advertiser's site based on measured user behaviors with respect to that site. This quality factor is then used in ranking, selecting, and pricing ads in an automated online auction. Further, while ad aggregators are not excluded from the ad market by the pricing rules of the Quality-Based Ad Pricer, these rules ensure that there is a “level playing field” such that ads of merchants are not excluded by the ads of ad aggregators.
    • “质量为基础的广告价格”将广告定价为用户如何响应通过在线广告发送的特定页面和/或域的功能。 通过确保与用户更相关的广告的价格低于与用户相关性较低的广告来提高用户体验。 特别地,基于相对于该站点的测量用户行为,每个广告的品质因子被确定为广告商网站的属性。 然后,此质量因子用于在自动化在线拍卖中对广告进行排名,选择和定价。 此外,虽然广告集合商并未按照质量为基础的广告价格定价规则从广告市场中排除,但这些规则确保有一个“公平竞争的环境”,广告商广告不会被广告集合商的广告排除在外 。
    • 7. 发明授权
    • Systems and methods that rank search results
    • 搜索结果排名的系统和方法
    • US07761447B2
    • 2010-07-20
    • US10820947
    • 2004-04-08
    • Eric D. BrillJesper B. LindMarc A. SmithWensi XiDuncan L. Davenport
    • Eric D. BrillJesper B. LindMarc A. SmithWensi XiDuncan L. Davenport
    • G06F7/00
    • G06F17/30675
    • The present invention provides systems and methods that rank search results. Such ranking typically includes determining a relevance of individual search results via one or more feature-based relevance functions. These functions can be tailored to users and/or applications, and typically are based on scoped information (e.g., lexical), digital artifact author related attributes, digital artifact source repository attributes, and/or relationships between features, for example. In addition, relevance functions can be generated via training sets (e.g., machine learning) or initial guesses that are iteratively refined over time. Upon determining relevance, search results can be ordered with respect to one another, based on respective relevances. Additionally, thresholding can be utilized to mitigate returning results likely to be non-relevant to the query, user and/or application.
    • 本发明提供了对搜索结果进行排序的系统和方法。 这种排名通常包括通过一个或多个基于特征的相关性功能来确定各个搜索结果的相关性。 这些功能可以针对用户和/或应用而定制,并且通常基于例如范围限定的信息(例如,词汇),数字人工制品相关属性,数字工件源存储库属性和/或特征之间的关系。 此外,可以通过随时间迭代地改进的训练集(例如,机器学习)或初始猜测来生成相关函数。 在确定相关性之后,可以基于相应的相关性来相对于彼此订购搜索结果。 此外,可以利用阈值来减轻可能与查询,用户和/或应用程序不相关的返回结果。
    • 8. 发明授权
    • Scaleable data itemsets and association rules
    • 可扩展数据项集和关联规则
    • US07490075B2
    • 2009-02-10
    • US11041826
    • 2005-01-24
    • Jesper B. LindChristopher A. MeekC. James MacLennan
    • Jesper B. LindChristopher A. MeekC. James MacLennan
    • G06F7/00
    • G06F17/30961Y10S707/99931Y10S707/99932Y10S707/99933Y10S707/99935Y10S707/99936
    • The subject invention leverages scaleable itemsets and/or association rules to provide dynamic adjustment of memory usage. This allows the subject invention to provide association rules and/or itemsets with the highest support while utilizing a bounded amount of memory. Thus, a data analysis system and/or method utilizing the subject invention can self-adjust to provide the best association rules and/or itemsets based on available system resources. One instance of the subject invention employs dynamically adjustable minimum support values for data itemsets and/or association rules to facilitate in compensating for memory availability. In yet another instance of the subject invention a prefix tree data structure is utilized to facilitate in constructing itemsets. Memory utilization is then adjusted via pruning and/or reallocation of counter vectors and/or pointer vectors and/or reallocation of nodes of the prefix tree data structure for scaleable data itemsets and/or association rules.
    • 本发明利用可扩展项目集和/或关联规则来提供存储器使用的动态调整。 这允许本发明提供具有最高支持的关联规则和/或项集,同时利用有界量的存储器。 因此,利用本发明的数据分析系统和/或方法可以进行自调整,以便根据可用的系统资源提供最佳关联规则和/或项集。 本发明的一个实例对于数据项集和/或关联规则使用动态可调的最小支持值,以便于补偿存储器可用性。 在本发明的另一个实例中,利用前缀树数据结构来促进构造项集。 然后通过修剪和/或重新分配计数器向量和/或指针向量来调整存储器利用率和/或用于可缩放数据项集和/或关联规则的前缀树数据结构的节点的重新分配。
    • 9. 发明申请
    • QUALITY BASED PRICING AND RANKING FOR ONLINE ADS
    • 基于质量的定价和排名在线ADS
    • US20090327032A1
    • 2009-12-31
    • US12146473
    • 2008-06-26
    • Asela J. GunawardanaJody D. BiggsJesper B. LindChristopher A. Meek
    • Asela J. GunawardanaJody D. BiggsJesper B. LindChristopher A. Meek
    • G06Q30/00G06Q10/00
    • G06Q30/02G06Q30/0243
    • A “Quality-Based Ad Pricer” prices ads as a function of how users respond to a particular page and/or domain to which they are sent by an online advertisement. User experience is improved by ensuring that advertisements that are more relevant to a user are priced less than an ads which are less relevant to the user. In particular, a quality factor for each ad is determined as a property of the advertiser's site based on measured user behaviors with respect to that site. This quality factor is then used in ranking, selecting, and pricing ads in an automated online auction. Further, while ad aggregators are not excluded from the ad market by the pricing rules of the Quality-Based Ad Pricer, these rules ensure that there is a “level playing field” such that ads of merchants are not excluded by the ads of ad aggregators.
    • “质量为基础的广告价格”将广告定价为用户如何响应通过在线广告发送的特定页面和/或域的功能。 通过确保与用户更相关的广告的价格低于与用户相关性较低的广告来提高用户体验。 特别地,基于相对于该站点的测量用户行为,每个广告的品质因子被确定为广告商网站的属性。 然后,此质量因子用于在自动在线拍卖中对广告进行排名,选择和定价。 此外,虽然广告集合商并未按照质量为基础的广告价格定价规则从广告市场中排除,但这些规则确保有一个“公平竞争的环境”,广告商广告不会被广告集合商的广告排除在外 。
    • 10. 发明授权
    • Systems and methods for improving collaborative filtering
    • 改进协同过滤的系统和方法
    • US07630916B2
    • 2009-12-08
    • US10603541
    • 2003-06-25
    • Jesper B. LindCarl M. KadieChristopher A. MeekDavid E. Heckerman
    • Jesper B. LindCarl M. KadieChristopher A. MeekDavid E. Heckerman
    • G06F17/30
    • G06Q30/06G06Q30/0201G06Q30/0202Y10S707/99933Y10S707/99935
    • The present invention provides collaborative filtering systems and methods employing statistical smoothing to provide quickly creatable models that can efficiently predict probability that a user likes an item and/or similarities between items. Smoothing is accomplished by utilizing statistical methods such as support cutoff, single and multiple prior on counts, and prior on measure of association and the like. By improving model-based collaborative filtering with such techniques, performance is increased with regard to product-to-product recommendations. The present invention also provides improvements over systems based on dependency nets (DN) in both areas of quality of recommendations and speed of model creation. It can also be complementary to DN to improve the value of an existing collaborative filtering system's overall efficiency. It is also employable with low frequency user preference data.
    • 本发明提供协同过滤系统和采用统计平滑的方法来提供可以有效地预测用户喜欢项目的概率和/或项目之间的相似性的快速可创建的模型。 平滑化是通过利用统计方法来实现的,例如支持截止,单次和多次之前的计数,以及之前关联度量等。 通过使用这些技术改进基于模型的协同过滤,关于产品对产品的建议,性能得到提高。 本发明还提供了在建模质量和模型创建速度的两个领域中基于依赖网络(DN)的系统的改进。 它也可以作为DN的补充,以提高现有协作过滤系统的整体效率的价值。 也可以使用低频用户偏好数据。