会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 81. 发明授权
    • Method and apparatus for controlling diameter of a silicon crystal ingot in a growth process
    • 在生长过程中控制硅晶锭的直径的方法和装置
    • US08012255B2
    • 2011-09-06
    • US12184016
    • 2008-07-31
    • Benno OrschelJoel KearnsKeiichi TakanashiVolker Todt
    • Benno OrschelJoel KearnsKeiichi TakanashiVolker Todt
    • C30B15/22
    • C30B15/22C30B29/06Y10T117/10Y10T117/1004Y10T117/1008Y10T117/1024Y10T117/1032
    • An improvement to a method and an apparatus for growing a monocrystalline silicon ingot from silicon melt according to the CZ process. The improvement performs defining an error between a target taper of a meniscus and a measured taper, and translating the taper error into a feedback adjustment to a pull-speed of the silicon ingot. The conventional control model for controlling the CZ process relies on linear control (PID) controlling a non-linear system of quadratic relationship defined in the time domain between the diameter and the pull-speed. The present invention transforms the quadratic relationship in the time domain between the diameter and the pull-speed into a simile, linear relationship in the length domain between a meniscus taper of the ingot and the pull-speed. The present invention applies a linear control (modified PID) which operates in the length domain, and controls a system that has a linear relationship between the ingot taper and the pull-speed in the length domain to control the diameter of a growing silicon ingot.
    • 根据CZ工艺从硅熔体生长单晶硅锭的方法和设备的改进。 该改进执行定义弯液面的目标锥度和测量的锥度之间的误差,并将锥度误差转换为硅锭的拉速的反馈调节。 用于控制CZ过程的常规控制模型依赖于线性控制(PID)来控制在直径和拉速之间的时域中定义的二次关系的非线性系统。 本发明将直径和拉速之间的时域中的二次关系变换成在晶锭的弯月面锥度与拉速之间的长度域中的简单的线性关系。 本发明应用在长度域内工作的线性控制(改进的PID),并且控制在长度域中具有晶锭锥度和拉速之间的线性关系的系统,以控制生长中的硅锭的直径。
    • 82. 发明申请
    • SILICON CRYSTALLINE MATERIAL AND METHOD FOR MANUFACTURING THE SAME
    • 硅晶体材料及其制造方法
    • US20100116194A1
    • 2010-05-13
    • US12524737
    • 2008-01-23
    • Shinji TogawaRyosuke Ueda
    • Shinji TogawaRyosuke Ueda
    • C30B15/28C01B33/021C30B15/22
    • C30B29/06C30B13/285C30B13/32C30B15/22
    • Provided is a silicon crystalline material, which is manufactured by a CZ method to be used as a material bar for manufacturing a silicon single crystal by an FZ method and has a grasping section for being loaded in a crystal growing furnace employing the FZ method without requiring mechanical processing. A method for manufacturing such silicon crystalline material is also provided. The silicon crystalline material is manufactured by the silicon crystal manufacturing method employing the CZ method and is provided with the grasping section, which is manufactured in a similar way as a shoulder portion, a straight body portion and a tail portion in a silicon crystal growing step employing the CZ method, and is loaded in a single crystal manufacturing apparatus employing the FZ method to grow single crystals. A seed-crystal used in the silicon crystal manufacture employing the CZ method is used as the grasping section. The grasping section is manufactured by temporarily changing crystal growing conditions to form a protruding section or a recessed section on the outer circumference surface of the straight body section or by forming a dent on the shoulder portion of the straight body portion, at the time of manufacturing the silicon crystal by the CZ method.
    • 提供了一种硅晶体材料,其通过CZ法制造,用作通过FZ法制造单晶硅材料棒,并且具有用FZ方法装载在晶体生长炉中的把持部分,而不需要 机械加工。 还提供了制造这种硅晶体材料的方法。 硅晶体材料通过使用CZ法的硅晶体制造方法制造,并且在硅晶体生长步骤中设置有与肩部相同的方式制造的把持部,直体部和尾部 采用CZ法,并装载在采用FZ法的单晶制造装置中生长单晶。 使用采用CZ法的硅晶体制造中使用的晶种被用作抓取部分。 通过临时改变晶体生长条件来制造把持部分,以在直体部分的外圆周表面上形成突出部分或凹部,或者在制造时在直体部分的肩部上形成凹痕 硅晶体采用CZ法。
    • 84. 发明申请
    • Process for producing single-crystal semiconductor and apparatus for producing single-crystal semiconductor
    • 单晶半导体的制造方法及单晶半导体的制造装置
    • US20050139149A1
    • 2005-06-30
    • US11005180
    • 2004-12-06
    • Susumu MaedaHiroshi InagakiShigeki KawashimaShoei KurosakaKozo Nakamura
    • Susumu MaedaHiroshi InagakiShigeki KawashimaShoei KurosakaKozo Nakamura
    • C30B15/00C30B15/20C30B15/22C30B15/36C30B29/06C30B21/06C30B27/02C30B28/10C30B30/04
    • C30B29/06C30B15/20C30B15/22C30B15/36Y10S117/90Y10T117/1004
    • A process for producing a single-crystal semiconductor and an apparatus therefor. A single-crystal semiconductor of large diameter and large weight can be lifted with the use of existing equipment not having any substantial change thereto while not influencing the oxygen concentration of single-crystal semiconductor and the temperature of melt and while not unduly raising the temperature of seed crystal. In particular, the relationship (L1, L2, L3) between the allowable temperature difference (ΔT) and the diameter (D) of seed crystal (14) is preset so that the temperature difference between the seed crystal (14) at the time the seed crystal (14) is immersed in the melt and the melt (5) falls within the allowable temperature difference (ΔT) at which dislocations are not introduced into the seed crystal (14). In accordance with the relationship (L1, L2, L3), the allowable temperature difference (ΔT) corresponding to the diameter (D) of seed crystal (14) to be immersed in the melt is determined. Temperature control is conducted so that at the time the seed crystal (14) is immersed in the melt (5) the temperature difference between the seed crystal (14) and the melt (5) falls within the determined allowable temperature difference (ΔT).
    • 一种单晶半导体的制造方法及其装置。 可以使用不具有任何显着变化的现有设备来提升大直径和大重量的单晶半导体,同时不影响单晶半导体的氧浓度和熔体的温度,同时不会过度地提高温度 晶种。 特别地,预设晶种(14)的允许温差(DeltaT)和直径(D)之间的关系(L 1,L 2,L 3),使得晶种(14)在 籽晶(14)浸入熔体中的时间和熔体(5)落入未被引入到晶种(14)中的位错的允许温度差(DeltaT)之内。 根据关系(L 1,L 2,L 3),确定与浸入熔体中的晶种(14)的直径(D)相对应的允许温度差(DeltaT)。 进行温度控制,使晶种(14)浸入熔融物(5)中时晶种(14)和熔体(5)之间的温度差落在确定的允许温差(DeltaT)之内。
    • 85. 发明授权
    • Silicon single crystal with no crystal defect in peripheral part of
wafer and process for producing the same
    • 晶圆周边部分没有晶体缺陷的硅单晶及其制造方法
    • US6120749A
    • 2000-09-19
    • US101941
    • 1998-07-17
    • Kiyotaka TakanoMakoto IidaEiichi IinoMasanori KimuraHirotoshi Yamagishi
    • Kiyotaka TakanoMakoto IidaEiichi IinoMasanori KimuraHirotoshi Yamagishi
    • C30B15/22C30B15/00C30B29/06H01L21/02H01L21/208C31B33/00
    • C30B29/06C30B15/00Y10S257/913
    • A silicon single-crystal wafer having a diameter of 6 inches or larger and improved in the dielectric breakdown strength of oxide film especially in a peripheral part thereof is provided to thereby heighten the yield of device chips produced per wafer. This wafer has no crystal defects with regard to the dielectric breakdown strength of oxide film in its peripheral region which extends from the circumference and accounts for up to 50% of the total area, in particular which extends from the circumference to a circle 30 mm apart from the circumference. A process for producing a silicon single crystal for easily producing, by the Czochralski method, a silicon single-crystal wafer improved in the dielectric breakdown strength of oxide film especially in a peripheral part thereof without considerably lowering the production efficiency is provided. In this process, the silicon single crystal which is being grown by the Czochralski method is pulled at a rate which is 80 to 60% of the critical pull rate inherent in the pulling apparatus.
    • PCT No.PCT / JP97 / 00090 Sec。 371日期:1998年7月17日 102(e)日期1998年7月17日PCT 1997年1月17日PCT PCT。 WO97 / 26393 PCT出版物 日期1997年7月24日提供直径为6英寸或更大并且提高了氧化膜的绝缘击穿强度的硅单晶晶片,特别是其周边部分,从而提高了每片晶片产生的器件芯片的产量。 该晶片在其周边区域中的氧化膜的介电击穿强度方面没有晶体缺陷,其从圆周延伸并占总面积的50%,特别是从圆周延伸到相隔30mm的圆 从圆周。 提供了一种用于通过切克劳斯斯克方法生产硅单晶的方法,其提供了特别在其周边部分提高氧化膜的介电击穿强度的硅单晶晶片,而不会显着降低生产效率。 在这个过程中,以切克劳斯基法生长的硅单晶以牵引装置固有的临界拉伸速率的80%至60%的速率被拉伸。
    • 87. 发明授权
    • Method for pulling a single crystal
    • 拉单晶的方法
    • US6019836A
    • 2000-02-01
    • US19981
    • 1998-02-06
    • Teruo Izumi
    • Teruo Izumi
    • C30B15/00C30B15/20C30B15/22
    • C30B15/22
    • In a conventional method for pulling a single crystal, a neck having a smaller diameter has been formed in order to exclude dislocation induced in dipping a seed crystal into a melt. However, in pulling a heavy single crystal having a large diameter of 12 inches or more, the single crystal cannot be supported and falls. When the diameter of the neck is large enough to prevent the fall, the dislocation cannot be excluded and propagates to the single crystal. According to the present invention, in a method for pulling a single crystal wherein a seed crystal is brought into contact with a melt within a crucible and then, a neck and a main body are formed, by setting the rotational speed of the seed crystal in the neck formation lower than the rotational speed thereof in the main body formation, dislocation can be efficiently excluded outward even if the neck is not too much narrowed down.
    • 在用于拉伸单晶的常规方法中,已经形成具有较小直径的颈部,以便排除将晶种浸入熔体中引起的位错。 然而,在拉出12英寸以上的大直径的重单晶时,单晶不能被支撑和落下。 当颈部的直径足够大以防止坠落时,不能排除位错并传播到单晶。 根据本发明,在将晶种与坩埚内的熔体接触,然后形成颈部和主体的单晶拉拔方法中,通过将晶种的旋转速度设定为 颈部形成比主体形成中的旋转速度低,即使颈部没有变窄,也能够有效地排除脱位。
    • 88. 发明授权
    • Method for fabricating a single-crystal semiconductor
    • 制造单晶半导体的方法
    • US5997635A
    • 1999-12-07
    • US10626
    • 1998-01-22
    • Toshimichi KubotaToshiro KotookaMakoto Kamogawa
    • Toshimichi KubotaToshiro KotookaMakoto Kamogawa
    • C30B15/14C30B15/22C30B29/06H01L21/208C30B15/18
    • C30B15/14Y10T117/1004Y10T117/1052Y10T117/1068Y10T117/1072Y10T117/1088
    • An apparatus and a method for fabricating a single-crystal semiconductor by means of CZ method are provided for improving the quality control through the modification of thermal cycle of a pulled single-crystal semiconductor. The apparatus includes a ring after heater which is capable of elevation. The method decreases a temperature gradient to smaller than 20.degree. C./cm, and preferably under 15.degree. C./cm, when the pulled single-crystal semiconductor is cooled from 1200.degree. C. to 1000.degree. C. The after heater therefore heats the single-crystal semiconductor where there is a temperature of 100-300.degree. C. lower than the range of 1200-1000.degree. C. A thermal shelter is provided to retain a temperature gradient of larger than 20.degree. C./cm when the single-crystal semiconductor is within the temperature range between the melting point and 1250.degree. C. The after heater and the shelter can be raised to an upper portion when polysilicon blocks are charged and a twisting step is carried out.
    • 提供了一种通过CZ方法制造单晶半导体的装置和方法,用于通过改变拉制单晶半导体的热循环来改善质量控制。 该装置包括能够升高的加热器后环。 当将拉制的单晶半导体从1200℃冷却至1000℃时,该方法将温度梯度降低到小于20℃/ cm,优选在15℃/ cm以下。因此加热器因此加热 单晶半导体,其温度为100-300℃,低于1200-1000℃的范围。提供热保护层以保持大于20℃/ cm的温度梯度,当单个 晶体半导体在熔点和1250℃之间的温度范围内。当多晶硅块被充电并且进行扭转步骤时,后加热器和遮蔽物可以升高到上部。
    • 89. 发明授权
    • Open-loop method and system for controlling growth of semiconductor
crystal
    • 用于控制半导体晶体生长的开环方法和系统
    • US5968263A
    • 1999-10-19
    • US53164
    • 1998-04-01
    • Sunil GroverSteven L. Kimbel
    • Sunil GroverSteven L. Kimbel
    • C30B29/06C30B15/14C30B15/20C30B15/22
    • C30B15/22C30B15/14C30B15/20
    • An open loop control method for use with an apparatus for growing a silicon single crystal having a zero dislocation state and an improved diameter and growth rate uniformity in accordance with the Czochralski process. According to the invention, a heat and mass transfer model based on the silicon charged to a crucible is determined as a function of one or more reference parameters. The reference parameter values are determined from the growth of a reference silicon single crystal. A power profile is then determined as a function of the heat and mass transfer model for a given pull rate profile and model diameter profile. The power profile generated is representative of the power supplied to a heater for providing an amount of thermal energy to the crucible for substantially maintaining a thermal equilibrium at the interface between the melt and the crystal. Finally, the crystal growing apparatus is controlled during the growth of at least a portion of the silicon single crystal by adjusting the thermal energy provided to the crucible by the heater in accordance with the power profile.
    • 一种开环控制方法,用于根据切克劳斯基法生长具有零位错状态和改善的直径和生长速率均匀性的单晶硅的装置。 根据本发明,基于装载到坩埚的硅的热和质量传递模型被确定为一个或多个参考参数的函数。 参考参数值由参考硅单晶的生长确定。 然后根据给定的拉力曲线和模型直径轮廓的热和质量传递模型确定功率分布。 生成的功率曲线代表供应给加热器的功率,以向坩埚提供一定量的热能,以基本上保持熔体和晶体之间的界面处的热平衡。 最后,通过根据功率曲线调节由加热器提供给坩埚的热能,在至少部分硅单晶生长期间控制晶体生长装置。
    • 90. 发明授权
    • Method and apparatus for the growth of a single crystal
    • 用于单晶生长的方法和装置
    • US5951758A
    • 1999-09-14
    • US937889
    • 1997-09-25
    • Katsushi HashioShin-ichi SawadaMasami Tatsumi
    • Katsushi HashioShin-ichi SawadaMasami Tatsumi
    • C30B15/00C30B15/22C30B15/30C30B23/00
    • C30B15/00C30B15/22C30B15/305C30B29/42Y10S117/90Y10T117/10Y10T117/1004Y10T117/1008Y10T117/1016Y10T117/1032
    • According to the present invention, in the growth of an oxide single crystal or a compound semiconductor single crystal such as GaAs single crystal by the CZ method or LEC method, the tendency of concave solid-liquid interface shape at the periphery of the growing crystal can be suppressed to prevent polycrystallization without localized heating of the solid-liquid interface, while controlling the diameter of the growing crystal even when using a crucible with a larger diameter, thus improving the yield of crystal on a commercial scale. In the invention, the end of a cylindrical body having an inner diameter of larger than the predetermined diameter of straight part of the growing crystal is immersed in the raw material melt or liquid encapsulant and the crystal is pulled while preventing the shape of the solid-liquid interface from becoming concave by controlling the rotation rate of at least one of a crucible holding the raw material melt, the growing crystal and cylindrical body.
    • 根据本发明,在通过CZ法或LEC法生长氧化物单晶或化合物半导体单晶如GaAs单晶时,生长晶体周围的凹固体 - 液体界面形状的倾向可以 被抑制以防止多结晶,而不会局部加热固 - 液界面,同时即使在使用具有较大直径的坩埚时也控制生长晶体的直径,从而以商业规模提高了晶体的产率。 在本发明中,将内径大于生长晶体的直线部分的预定直径的圆筒体的端部浸渍在原料熔融液体或液体密封剂中,并且拉伸晶体,同时防止固体 - 液体界面通过控制保持原料熔体,生长晶体和圆柱体的坩埚中的至少一个的旋转速率而变得凹陷。