会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 82. 发明授权
    • Method for manufacturing metal microstructure
    • 制造金属微观结构的方法
    • US07338753B2
    • 2008-03-04
    • US11503303
    • 2006-08-14
    • Jun YoritaYoshihiro HirataTsuyoshi Haga
    • Jun YoritaYoshihiro HirataTsuyoshi Haga
    • G03F7/039
    • B81C99/0085B81C2201/032C25D1/003H01L21/4821H05K3/202H05K3/205
    • A method of manufacturing a metal microstructure (1) by using a resin mold (13). In order to provide a method in which a mild manufacturing condition which causes less damage to the resin mold (13) can be set and the high-precision metal microstructure (1) can be mass-produced by uniform electroforming, the method of manufacturing the metal microstructure (1) according to the present invention includes the steps of: fixing on a conductive substrate (11) the resin mold (13) having a vacant portion penetrating in the direction of thickness, by interposing a photosensitive polymer (12) having a chemical composition changed by an electron beam, ultraviolet radiation or visible radiation so as to form a layered structure (2) having the resin mold (13); exposing the layered structure (2) having the resin mold (13) to an electron beam, ultraviolet radiation or visible radiation; removing an exposed photosensitive polymer (12c) existing at the vacant portion of the resin mold (13); and filling with a metal (14) the vacant portion of the layered structure (2) having the resin mold (13) by electroforming.
    • 一种通过使用树脂模具(13)制造金属微结构(1)的方法。 为了提供可以设定对树脂模具(13)造成较小损害的温和制造条件并且可以通过均匀电铸来大量生产高精度金属微结构(1)的方法,制造 根据本发明的金属微结构(1)包括以下步骤:通过插入具有一个或多个金属微结构(1)的光敏聚合物(12)将具有穿过厚度方向的空白部分的树脂模具(13)固定在导电基板(11)上, 化学成分由电子束,紫外线辐射或可见光辐射而变化,形成具有树脂模具(13)的层状结构(2)。 将具有树脂模具(13)的层状结构(2)暴露于电子束,紫外线或可见光; 去除存在于树脂模具(13)的空缺部分的暴露的光敏聚合物(12c); 并通过电铸将金属(14)填充到具有树脂模具(13)的层状结构(2)的空位部分上。
    • 88. 发明授权
    • Shaped microcomponents via reactive conversion of biologically-derived microtemplates
    • 通过生物衍生的微型模板的反应转化形成微型组件
    • US07204971B2
    • 2007-04-17
    • US10160292
    • 2002-05-30
    • Kenneth H. Sandhage
    • Kenneth H. Sandhage
    • C01B13/14
    • G01N33/54346B81B2201/034B81B2201/035B81C1/00B81C99/0085G01N33/54353G01N33/544Y10S977/811Y10S977/84Y10S977/89Y10S977/90
    • The present invention is focused on a revolutionary, low-cost (highly-scaleable) approach for the mass production of three-dimensional microcomponents: the biological reproduction of naturally-derived, biocatalytically-derived, and/or genetically-tailored three-dimensional microtemplates (e.g., frustules of diatoms, microskeletons of radiolarians, shells of mollusks) with desired dimensional features, followed by reactive conversion of such microtemplates into microcomponents with desired compositions that differ from the starting microtemplate and with dimensional features that are similar to those of the starting microtemplate. Because the shapes of such microcomponents may be tailored through genetic engineering of the shapes of the microtemplates, such microcomposites are considered to be Genetically-Engineered Materials (GEMs).
    • 本发明集中在用于大规模生产三维微型组件的革命性的低成本(高度可扩展)方法:天然衍生的,生物催化衍生的和/或基因定制的三维微型模板的生物繁殖 (例如,硅藻的截头圆锥体,放射体的微骨架,软体动物的壳)具有所需的尺寸特征,随后将这种微模板反应转化成具有与起始微模板不同的所需组成的微组件,并具有与起始微模板类似的尺寸特征 微模板。 由于这些微型组件的形状可以通过微型模板的形状的遗传工程来定制,所以这种微复合材料被认为是基因工程材料(GEM)。
    • 90. 发明申请
    • Method of imprinting shadow mask nanostructures for display pixel segregation
    • 印刷阴影纳米结构用于显示像素分离的方法
    • US20050258571A1
    • 2005-11-24
    • US11089101
    • 2005-03-24
    • Jarrett DumondHong Low
    • Jarrett DumondHong Low
    • B28B11/08B29C59/02B81C1/00B81C99/00B82B3/00G03C5/00G03F7/00
    • A61M25/00B27N3/08B28B3/06B81C99/0085B81C2201/034B81C2203/032B81C2203/038B82Y10/00B82Y40/00G03F7/0002Y10T428/24479Y10T428/254
    • The present invention is directed to micro- and nano-scale imprinting methods and the use of such methods to fabricate supported and/or free-standing 3-D micro- and/or nano-structures of polymeric, ceramic, and/or metallic materials, particularly for pixel segregation in OLED-based displays. In some embodiments, a duo-mold approach is employed in the fabrication of these structures. In such methods, surface treatments are employed to impart differential surface energies to different molds and/or different parts of the mold(s). Such surface treatments permit the formation of three-dimensional (3-D) structures through imprinting and the transfer of such structures to a substrate. In some or other embodiments, such surface treatments and variation in glass transition temperature of the polymers used can facilitate separation of the 3-D structures from the molds to form free-standing micro- and/or nano-structures individually and/or in a film. In some or other embodiments, a “latch-on” assembly technique is utilized to form supported and/or free-standing stacked micro- and/or nano-structures that enable the assembly of polymers without a glass transition temperature and eliminate the heating required to assemble thermoplastic polymers.
    • 本发明涉及微尺度和纳米级压印方法,并且使用这种方法来制造聚合物,陶瓷和/或金属材料的负载和/或独立的3-D微观和/或纳米结构 特别是用于基于OLED的显示器中的像素分离。 在一些实施例中,在制造这些结构中采用双模方法。 在这种方法中,使用表面处理以将不同的表面能赋予模具的不同模具和/或模具的不同部分。 这种表面处理允许通过压印形成三维(3-D)结构并将这种结构转移到基底上。 在一些或其它实施方案中,所使用的聚合物的这种表面处理和玻璃化转变温度的变化可促进3-D结构与模具的分离,以单独形成独立的和/或纳米结构,并且/ 电影。 在一些或其它实施方案中,使用“闭锁”组装技术来形成支撑和/或独立堆叠的微结构和/或纳米结构,其能够组装聚合物而不具有玻璃化转变温度并消除所需的加热 组装热塑性聚合物。