会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 61. 发明授权
    • CMOS compatible pixel cell that utilizes a gated diode to reset the cell
    • CMOS兼容像素单元,利用门控二极管复位单元
    • US06380571B1
    • 2002-04-30
    • US09173276
    • 1998-10-14
    • Alexander KalnitskyAlbert BergemontPavel Poplevine
    • Alexander KalnitskyAlbert BergemontPavel Poplevine
    • H01L31113
    • H01L27/14654H01L27/14609H01L27/1463
    • The potential on a pixel cell having a gated diode and a read out transistor is set to an initial level prior to an image integration period. During the image integration period, absorbed photons cause the potential on the pixel cell to change. After the image integration period, the pixel cell is then reset and read out by applying a number of pulses to the gated diode. Each of the pulses causes a fixed amount of charge to be injected into the cell. When the potential on the cell has again returned to the initial level, the number of absorbed photons is determined by counting the number of pulses that were required to return the potential to the initial level. The read out transistor is used to determine when the potential is at the initial level by biasing the transistor to output a current that corresponds to the potential on the pixel cell.
    • 具有门控二极管和读出晶体管的像素单元上的电位在图像积分周期之前被设置为初始电平。 在图像积分期间,吸收的光子导致像素单元的电位发生变化。 在图像积分周期之后,通过向门控二极管施加多个脉冲来复位和读出像素单元。 每个脉冲导致固定量的电荷注入到电池中。 当电池上的电位再次恢复到初始电平时,通过计算将电位恢复到初始电平所需的脉冲数来确定吸收光子的数量。 读出晶体管用于通过偏置晶体管来输出对应于像素单元上的电位的电流来确定电位何时处于初始电平。
    • 62. 发明授权
    • Process for fabricating isolation structure for IC featuring grown and buried field oxide
    • 用于制造具有生长和掩埋场氧化物的IC的隔离结构的方法
    • US06300220B1
    • 2001-10-09
    • US09479316
    • 2000-01-06
    • Albert Bergemont
    • Albert Bergemont
    • H01L2176
    • H01L29/66265H01L21/76264H01L21/76281H01L21/76283H01L29/7317
    • An isolation structure having both deep and shallow components is formed in a semiconductor workpiece by etching the workpiece to define raised precursor active device regions separated by sunken precursor isolation regions. An oxidation mask is formed to expose the precursor isolation regions, and the unmasked precursor isolation regions are exposed to oxidizing conditions to grow field oxides as the deep isolation component. Thermal growth of these field oxides creates topography which includes shallow recesses adjacent to the raised precursor active device regions. Deposition of conformal dielectric material such as high density plasma (HDP) deposited silicon oxide over the entire surface and within the recesses creates the shallow isolation component. Following planarization of the conformal dielectric material, fabrication of the device is completed by introducing conductivity-altering dopant into raised precursor active device regions. Vertical isolation of the device from the underlying material is provided by a subsurface dielectric or doped layer in contact with the deep isolation component.
    • 通过蚀刻工件在半导体工件中形成具有深度和浅部分的隔离结构,以限定由凹陷的前体隔离区隔开的凸起的前体活性器件区域。 形成氧化掩模以暴露前体隔离区,并且将未掩蔽的前体隔离区暴露于氧化条件以生长作为深度隔离组分的场氧化物。 这些场氧化物的热生长产生形貌,其包括与升高的前体活性器件区域相邻的浅凹槽。 在整个表面和凹槽内沉积诸如高密度等离子体(HDP)沉积氧化硅的保形介质材料形成浅隔离部件。 在保形电介质材料的平坦化之后,通过将导电性改变的掺杂剂引入凸起的前体有源器件区域来完成器件的制造。 器件与下层材料的垂直隔离由与深度隔离部件接触的地下电介质或掺杂层提供。
    • 65. 发明授权
    • Process for forming high quality gate silicon dioxide layers of multiple thicknesses
    • 用于形成多个厚度的高质量栅极二氧化硅层的工艺
    • US06225163B1
    • 2001-05-01
    • US09507708
    • 2000-02-18
    • Albert Bergemont
    • Albert Bergemont
    • H01L2100
    • H01L21/02238H01L21/02255H01L21/31662H01L21/823462H01L21/823481Y10S438/981
    • A process for forming high quality gate silicon dioxide layers of multiple thicknesses. The process includes steps of first providing a semiconductor substrate (e.g., a silicon wafer) with at least a first active area, a second active area and an electrical isolation region separating the first and second active area, followed by the formation of a first gate silicon dioxide layer of a predetermined thickness (typically less than 100 angstroms) on the first and second active areas. A first silicon layer (e.g., a polysilicon or amorphous silicon layer) is then deposited on the first gate silicon dioxide layer and the electrical isolation region. Next, the first silicon layer is patterned using, for example, photolithographic and etching techniques, to form a patterned first silicon layer and to expose a portion of the first gate silicon dioxide layer that was grown on the second active area. Next, the exposed portion of the first gate silicon dioxide layer is removed and a second gate silicon dioxide layer of another predetermined thickness is formed on the second active area. A second silicon layer (e.g., a polysilicon or amorphous silicon layer) is then deposited on the second gate silicon dioxide layer and overlying the patterned first silicon layer. Finally, the second silicon layer is patterned to form a patterned second silicon layer.
    • 用于形成多个厚度的高质量栅极二氧化硅层的工艺。 该方法包括以下步骤:首先提供具有至少第一有源区域,第二有源区域和分离第一和第二有源区域的电隔离区域的半导体衬底(例如,硅晶片),随后形成第一栅极 在第一和第二有效区域上具有预定厚度(通常小于100埃)的二氧化硅层。 然后将第一硅层(例如,多晶硅或非晶硅层)沉积在第一栅极二氧化硅层和电隔离区上。 接下来,使用例如光刻和蚀刻技术对第一硅层进行图案化,以形成图案化的第一硅层并暴露在第二有源区上生长的第一栅极二氧化硅层的一部分。 接下来,去除第一栅极二氧化硅层的暴露部分,并且在第二有源区域上形成另一预定厚度的第二栅极二氧化硅层。 然后将第二硅层(例如,多晶硅或非晶硅层)沉积在第二栅极二氧化硅层上并覆盖图案化的第一硅层。 最后,将第二硅层图案化以形成图案化的第二硅层。