会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 41. 发明授权
    • Methods and structures for metal interconnections in integrated circuits
    • 集成电路中金属互连的方法和结构
    • US07186664B2
    • 2007-03-06
    • US11104160
    • 2005-04-12
    • Kie Y. AhnLeonard ForbesPaul A. Farrar
    • Kie Y. AhnLeonard ForbesPaul A. Farrar
    • H01L21/31H01L21/469
    • H01L21/76877H01L21/7682H01L21/76886H01L23/53271H01L2221/1047H01L2924/0002Y10S438/933H01L2924/00
    • A typical integrated-circuit fabrication requires interconnecting millions of microscopic transistors and resistors with metal wires. Making the metal wires flush, or coplanar, with underlying insulation requires digging trenches in the insulation, and then filling the trenches with metal to form the wires. The invention provides a new “trench-less” or “self-planarizing” method of making coplanar metal wires. Specifically, one embodiment forms a first layer that includes silicon and germanium; oxidizes a region of the first layer to define an oxidized region and a non-oxidized region; and reacts aluminum or an aluminum alloy with the non-oxidized region. The reaction substitutes, or replaces, the non-oxidized region with aluminum to form a metallic wire coplanar with the first layer. Another step removes germanium oxide from the oxidized region to form a porous insulation having a very low dielectric constant, thereby reducing capacitance.
    • 典型的集成电路制造需要用金属线互连数百万个微观晶体管和电阻器。 使金属丝与底层绝缘体齐平或共面需要在绝缘层中挖沟,然后用金属填充沟槽以形成导线。 本发明提供了一种制造共面金属线的新的“无沟槽”或“自平坦化”方法。 具体地,一个实施方案形成包括硅和锗的第一层; 氧化第一层的区域以限定氧化区域和非氧化区域; 并使铝或铝合金与非氧化区域反应。 该反应用铝代替或替代非氧化区域以形成与第一层共面的金属线。 另一步骤从氧化区域除去氧化锗以形成具有非常低介电常数的多孔绝缘体,由此降低电容。
    • 42. 发明授权
    • Methods and structures for metal interconnections in integrated circuits
    • 集成电路中金属互连的方法和结构
    • US06504224B1
    • 2003-01-07
    • US09651471
    • 2000-08-30
    • Kie Y. AhnLeonard ForbesPaul A. Farrar
    • Kie Y. AhnLeonard ForbesPaul A. Farrar
    • H01L2900
    • H01L21/76877H01L21/7682H01L21/76886H01L23/53271H01L2221/1047H01L2924/0002Y10S438/933H01L2924/00
    • A typical integrated-circuit fabrication requires interconnecting millions of microscopic transistors and resistors with metal wires. Making the metal wires flush, or coplanar, with underlying insulation requires digging trenches in the insulation, and then filling the trenches with metal to form the wires. Trench digging is time consuming and costly. Accordingly, the invention provides a new “trench-less” or “self-planarizing” method of making coplanar metal wires. Specifically, one embodiment forms a first layer that includes silicon and germanium; oxidizes a region of the first layer to define an oxidized region and a non-oxidized region; and reacts aluminum or an aluminum alloy with the non-oxidized region. The reaction substitutes, or replaces, the non-oxidized region with aluminum to form a metallic wire coplanar with the first layer. Another step removes germanium oxide from the oxidized region to form a porous insulation having a very low dielectric constant, thereby reducing capacitance. Thus, the present invention not only eliminates the timing-consuming, trench-digging step of conventional methods, but also reduces capacitance which, in turn, enables faster, more-efficient integrated circuits.
    • 典型的集成电路制造需要用金属线互连数百万个微观晶体管和电阻器。 使金属丝与底层绝缘体齐平或共面需要在绝缘层中挖沟,然后用金属填充沟槽以形成导线。 沟槽挖掘费时费力。 因此,本发明提供了一种制造共面金属线的新的“无沟槽”或“自平坦化”方法。 具体地,一个实施方案形成包括硅和锗的第一层; 氧化第一层的区域以限定氧化区域和非氧化区域; 并使铝或铝合金与非氧化区域反应。 该反应用铝代替或替代非氧化区域以形成与第一层共面的金属线。 另一步骤从氧化区域除去氧化锗以形成具有非常低介电常数的多孔绝缘体,由此降低电容。 因此,本发明不仅消除了常规方法的耗时的沟槽挖掘步骤,而且降低了电容,进而实现了更快,更高效的集成电路。
    • 49. 发明授权
    • Strained semiconductor, devices and systems and methods of formation
    • 应变半导体,器件和系统及其形成方法
    • US07888744B2
    • 2011-02-15
    • US12346281
    • 2008-12-30
    • Leonard ForbesPaul A. Farrar
    • Leonard ForbesPaul A. Farrar
    • H01L29/76H01L29/94H01L31/062H01L31/113H01L31/119
    • H01L29/7846H01L21/26506H01L21/76232H01L29/6659H01L29/7833
    • In various method embodiments, a device region is defined in a semiconductor substrate and isolation regions are defined adjacent to the device region. The device region has a channel region, and the isolation regions have volumes. The volumes of the isolation regions are adjusted to provide the channel region with a desired strain. In various embodiments, adjusting the volumes of the isolation regions includes transforming the isolation regions from a crystalline region to an amorphous region to expand the volumes of the isolation regions and provide the channel region with a desired compressive strain. In various embodiments, adjusting the volumes of the isolation regions includes transforming the isolation regions from an amorphous region to a crystalline region to contract the volumes of the isolation regions to provide the channel region with a desired tensile strain. Other aspects and embodiments are provided herein.
    • 在各种方法实施例中,器件区域被限定在半导体衬底中,并且隔离区域被限定为与器件区域相邻。 器件区域具有通道区域,隔离区域具有体积。 调整隔离区的体积以提供具有所需应变的通道区。 在各种实施例中,调节隔离区域的体积包括将隔离区域从结晶区域转换为非晶区域以扩大隔离区域的体积并且为通道区域提供期望的压缩应变。 在各种实施例中,调节隔离区域的体积包括将隔离区域从非晶区域转换为结晶区域以收缩隔离区域的体积,以提供具有期望拉伸应变的通道区域。 本文提供了其它方面和实施例。