会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 42. 发明授权
    • Exposure apparatus and an exposure method
    • 曝光装置和曝光方法
    • US06549269B1
    • 2003-04-15
    • US09714620
    • 2000-11-17
    • Kenji NishiKazuya Ota
    • Kenji NishiKazuya Ota
    • G03B2742
    • G03F7/70216G03F7/70358G03F7/70425G03F7/70716G03F7/70733G03F9/70G03F9/7003G03F9/7015G03F9/7026G03F9/7088
    • Two stages (WS1), (WS2) holding wafers can independently move between a positional information measuring section (PIS) under an alignment system (24a) and an exposing section (EPS) under a projection optical system (PL). The wafer exchange and alignment are performed on the stage (WS1), during which wafer (W2) is exposed on the stage (WS2). A position of each shot area of wafer (WS1) is obtained as a relative position with respect to a reference mark formed on the stage (WS1) in the section (PIS). Relative positional information can be used for the alignment with respect to an exposure pattern when the wafer (WS1) is moved to the section (EPS) to be exposed. Therefore, it is not necessary that a stage position is observed continuously in moving the stage. Exposure operations are performed in parallel by the two wafer stages (WS1) and (WS2) so as to improve the throughput.
    • 保持晶片的两级(WS1),(WS2)可以在投影光学系统(PL)下方的位置信息测量部分(PIS)和对准系统(24a)之间的曝光部分(EPS)之间独立地移动。 在阶段(WS1)上执行晶片交换和对准,在该阶段期间晶片(W2)暴露在平台(WS2)上。 获得晶片(WS1)的每个照射区域的位置作为相对于形成在该部分(PIS)中的台面(WS1)上的参考标记的相对位置。 当将晶片(WS1)移动到要暴露的部分(EPS)时,相对位置信息可用于相对于曝光图案的对准。 因此,在移动台阶段不需要连续观察台位置。 曝光操作由两个晶片级(WS1)和(WS2)并行执行,以提高生产率。
    • 43. 发明授权
    • Projection exposure system
    • 投影曝光系统
    • US06388735B1
    • 2002-05-14
    • US09671741
    • 2000-09-29
    • Kazuya Ota
    • Kazuya Ota
    • G03B2742
    • G03F9/70G03F7/70241G03F7/70358
    • A projection exposure system for printing the pattern formed on a reticle onto a wafer includes a reticle stage (5) and a wafer stage. A first reference plate (9) having a first reference pattern (MM1) formed thereon is mounted on the reticle stage (5), and a second reference plate (25) having a second reference pattern (WM1) formed thereon is mounted on the wafer stage. The first reference pattern (MM1) comprises two cross-marks (60a, 60b) spaced apart from each other in X-direction, and the second reference pattern (WM1) comprises two cross-marks (61a, 61b) spaced apart from each other in X-direction. Images of the cross-marks (61a, 61b) of the second reference pattern (WM1) are formed through a projection optical system (2) on the reticle stage (5) and superimposed with the cross-marks (60a, 60b) of the first reference pattern (MM1). A pair of observation optical systems (10, 11) spaced apart from each other in X-direction are used to observe the superimposed images of the corresponding cross-marks (60a and 61a, 60b and 61b), so as to determine the position shifts in X-direction between the corresponding superimposed images at two positions spaced from each other in X-direction. The determined position shifts are used to calculate the variation in projection magnification. The projection exposure system is capable of quick and high precision detection of the magnification of the projection optical system (2).
    • 用于将形成在掩模版上的图案印刷到晶片上的投影曝光系统包括标线片台(5)和晶片台。 具有形成在其上的第一参考图案(MM1)的第一参考板(9)安装在标线片台(5)上,并且在其上形成有第二参考图案(WM1)的第二参考板(25)安装在晶片 阶段。 第一参考图案(MM1)包括在X方向上彼此间隔开的两个十字标记(60a,60b),并且第二参考图案(WM1)包括彼此间隔开的两个交叉标记(61a,61b) 在X方向。 通过投影光学系统(2)在标线片台(5)上形成第二参考图案(WM1)的交叉标记(61a,61b)的图像,并与第二参考图案(60)的交叉标记(60a,60b) 第一参考模式(MM1)。 使用在X方向上彼此间隔开的一对观察光学系统(10,11)来观察相应交叉标记(60a和61a,60b和61b)的叠加图像,以便确定位置偏移 在X方向上在X方向上彼此间隔的两个位置处的对应叠加图像之间的X方向。 使用确定的位置偏移来计算投影放大率的变化。 投影曝光系统能够快速高精度地检测投影光学系统(2)的放大倍数。
    • 44. 发明授权
    • Exposure apparatus, method for producing the same, and exposure method
    • 曝光装置及其制造方法以及曝光方法
    • US06359678B1
    • 2002-03-19
    • US09567971
    • 2000-05-10
    • Kazuya Ota
    • Kazuya Ota
    • G03B2742
    • G03F7/707G03F7/70233G03F7/7025G03F7/70283G03F7/70358G03F7/70708G03F7/70775G03F7/70891G03F9/70G03F9/7026G03F9/7034
    • When an illumination light beam is radiated by an illumination system at a predetermined angle of incidence &thgr; with respect to a pattern plane of a mask, the illumination light beam is reflected by the pattern plane. The reflected light beam is projected by a projection optical system PO onto a substrate, and a pattern in an area on the mask illuminated with the illumination light beam is transferred onto the substrate. During the transfer, a stage control system is operated to synchronously move a mask stage and a substrate stage in the Y direction, while adjusting a relative position of the mask in the Z direction with respect to the projection optical system, on the basis of predetermined adjusting position information. Accordingly, although the mask side of the projection optical system is non-telecentric, it is possible to effectively suppress the occurrence of the magnification error and the positional discrepancy in a transferred image of the pattern on the substrate due to Z displacement of the mask. As a result, the overlay accuracy is improved. The present invention is especially preferred to perform exposure at high resolution with an illumination light beam in the soft X-ray region.
    • 当相对于掩模的图案平面以照射系统以预定的入射角照射照明光束时,照明光束被图案平面反射。 反射光束通过投影光学系统PO投影到基板上,并且用照明光束照射的掩模上的区域中的图案被转印到基板上。 在传送期间,操作台控制系统,以在Y方向上同步移动掩模台和基板台,同时基于预定的方式调整掩模在Z方向上相对于投影光学系统的相对位置 调整位置信息。 因此,虽然投影光学系统的掩模侧是非远心的,但是由于掩模的Z位移,可以有效地抑制基板上的图案的转印图像的放大误差的发生和位置偏差的发生。 结果,覆盖精度提高。 本发明特别优选以软X射线区域中的照明光束以高分辨率进行曝光。
    • 45. 发明授权
    • Alignment apparatus in projection exposure apparatus
    • 投影曝光装置中的对准装置
    • US6153886A
    • 2000-11-28
    • US407610
    • 1999-09-28
    • Shigeru HagiwaraHideo MizutaniKazuya Ota
    • Shigeru HagiwaraHideo MizutaniKazuya Ota
    • G03F9/00G01N21/86
    • G03F9/7065G03F9/7088
    • An alignment apparatus according to the present invention is constructed, for example, which is arranged in an exposure apparatus provided with a projection optical system which projects a predetermined pattern formed on a mask onto a substrate under exposure light, which performs relative positioning between the mask and the substrate, which has light irradiating means for irradiating alignment light in a wavelength region different from that of exposure light onto an alignment mark formed on the substrate through the projection optical system and detecting means for detecting light from the alignment mark through the projection optical system, wherein, for alignment light as irradiation light traveling toward the alignment mark and alignment light as detection light from the alignment mark, there are provided correction optical elements for irradiation light and correction optical elements for detection light to cause axial chromatic aberration and magnification chromatic aberration in the opposite directions to axial chromatic aberration and magnification chromatic aberration of the projection optical system between the mask and the substrate, wherein the alignment light is multi-colored light with a plurality of beams different in wavelength from each other in the wavelength region different from that of exposure light, and wherein the correction optical elements for irradiation light or the correction optical elements for detection light each are provided in correspondence with the plurality of beams different in wavelength.
    • 根据本发明的对准装置例如被构造成设置在具有投影光学系统的曝光装置中,该投影光学系统将在掩模上形成的预定图案投影到曝光光下的基板上,该曝光装置执行掩模 以及基板,其具有用于通过投影光学系统将与曝光光不同的波长区域中的对准光照射到形成在基板上的对准标记上的光照射装置和用于通过投影光学器件检测来自对准标记的光的检测装置 系统,其中,对于作为向对准标记行进的照射光的对准光和作为来自对准标记的检测光的对准光,设置有用于照射光的校正光学元件和用于检测光的校正光学元件,以产生轴向色差和倍率色彩 像差 在与掩模和基板之间的投影光学系统的轴向色差和倍率色差的相反方向上,其中对准光是具有多个不同波长区域的波长不同的多个光束的多色光 曝光用光,并且其中用于照射光的校正光学元件或用于检测光的校正光学元件各自对应于波长不同的多个光束。
    • 47. 发明授权
    • Projection exposure method
    • 投影曝光法
    • US5715063A
    • 1998-02-03
    • US649484
    • 1996-05-17
    • Kazuya Ota
    • Kazuya Ota
    • G03F9/00H01L21/027G01B11/00
    • G03F9/70
    • The X-coordinate of an X-axis search alignment mark (GMX) on a wafer (6) and the Y-coordinates of Y-axis search alignment marks (GMY1 and GMY2) on the wafer (6) are measured by laser step alignment (LSA) method, and the results of the measurement are processed to calculate approximate array coordinates of shot areas (ES1 to ES21) on the wafer (6). Die-by-die alignment and exposure are initiated from the shot area (ES11) that is the closest to the center of the array of all search alignment marks by using a TTR and two-beam interference (LIA) type alignment sensor having a predetermined capture range. At a shot area to be subsequently exposed, the amount of positional displacement between the reticle and the wafer is made to fall within the capture range relative to the initial positional displacement, thereby enabling alignment of high accuracy.
    • 通过激光步进对准来测量晶片(6)上的X轴搜索对准标记(GMX)的X坐标和晶片(6)上的Y轴搜索对准标记(GMY1和GMY2)的Y坐标 (LSA)方法,并且处理测量结果以计算晶片(6)上的拍摄区域(ES1至ES21)的近似阵列坐标。 通过使用具有预定的TTR和双光束干涉(LIA)型对准传感器,从与所有搜索对准标记的阵列的中心最接近的拍摄区域(ES11)开始逐一对准和曝光 捕获范围。 在随后暴露的照射区域,使掩模版和晶片之间的位置偏移量相对于初始位置位移落在捕获范围内,从而能够高精度地对准。
    • 50. 发明授权
    • Diffraction-type displacement detector for alignment of mask and wafer
    • 用于对准掩模和晶片的衍射型位移检测器
    • US5160849A
    • 1992-11-03
    • US642384
    • 1991-01-17
    • Kazuya OtaNobutaka Magome
    • Kazuya OtaNobutaka Magome
    • G01D5/38G01B11/00G03F7/20G03F9/00H01L21/027H01L21/30
    • G03F7/70633G03F9/7049
    • A displacement detector comprises a beam irradiation device for irradiating beams almost equal in wavelength on a diffraction grating provided on an object to be measured from two directions different each other, a photoelectric detector for detecting an interference intensity of specific diffracted rays generated from the diffraction grating, and a measuring device for measuring a displacement of the object to be measured with reference to a grating pitch direction of the diffraction grating according to an outgoing signal of the photoelectric detector; the photoelectric detector is equipped with a first photoelectric detector for detecting an interference intensity of diffracted rays of an angle of diffraction running in the said direction from the diffraction grating, and a second photoelectric detector for detecting an interference intensity of diffracted rays different in angle of diffraction running in the same direction from the diffraction grating; the measuring device has a first measuring portion for measuring a value corresponding to a displacement of the object to be measured according to an outgoing signal of the first photoelectric detector, and a second measuring portion for measuring a value corresponding to a displacement of the object to be measured according to an outgoing signal of the second photoelectric detector, outputting at least one mean value of the measured value of the first measuring portion and the measured value of the second measuring portion.
    • 位移检测器包括用于从设置在待测物体上的衍射光栅在两个方向彼此不同的方向照射波长几乎相等的光束照射装置,用于检测由衍射光栅产生的特定衍射光线的干涉强度的光电检测器 以及测量装置,用于根据光电检测器的输出信号,根据衍射光栅的光栅间距方向测量待测物体的位移; 光电检测器配备有第一光电检测器,用于检测来自衍射光栅的沿所述方向的衍射角的衍射光线的干涉强度;以及第二光电检测器,用于检测与衍射光线的角度不同的衍射光线的干涉强度 绕衍射光栅在相同方向上的衍射; 测量装置具有第一测量部分,用于根据第一光电检测器的输出信号测量对应于被测量物体的位移的值;以及第二测量部分,用于测量与物体的位移对应的值 根据第二光电检测器的输出信号进行测量,输出第一测量部分的测量值和第二测量部分的测量值的至少一个平均值。