会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 12. 发明授权
    • Conductivity-modulated semiconductor device with high breakdown voltage
    • 具有高击穿电压的电导率调制半导体器件
    • US5444271A
    • 1995-08-22
    • US105630
    • 1993-08-13
    • Masashi Kuwahara
    • Masashi Kuwahara
    • H01L29/78H01L21/331H01L21/336H01L29/08H01L29/739H01L21/223H01L27/02H01L29/74
    • H01L29/66333H01L29/0834H01L29/7392
    • Base regions of a second conductivity type are formed and spaced apart from one another in a first major surface of a semiconductor substrate of a first conductivity type which functions as a drain region. Source regions of the first conductivity type are formed in each of the base regions and spaced apart from one another. Gate insulating films are formed on portions of the drain region which are located between adjacent source regions. Gates are formed on the gate insulating films. Source electrodes are formed such that each electrode short-circuits one-base region to the source regions formed in the base region. A first anode region of the second conductivity type is formed on a second major surface of the semiconductor substrate. A second anode region of the second conductivity type is formed on the first anode region. This second anode region is made of polycrystalline silicon of the second conductivity type and has an impurity concentration higher than that of the first anode region. An anode electrode is formed on the second anode region.
    • 在第一导电类型的半导体衬底的第一主表面中形成第二导电类型的基极区域并且彼此间隔开,其用作漏极区域。 第一导电类型的源极区域形成在每个基极区域中并且彼此间隔开。 栅极绝缘膜形成在位于相邻源极区域之间的漏极区域的部分上。 栅极形成在栅极绝缘膜上。 源电极形成为使得每个电极将一个碱基区域短路到形成在基极区域中的源极区域。 第二导电类型的第一阳极区域形成在半导体衬底的第二主表面上。 第二导电类型的第二阳极区形成在第一阳极区上。 该第二阳极区由第二导电类型的多晶硅制成,其杂质浓度高于第一阳极区的杂质浓度。 阳极电极形成在第二阳极区域上。
    • 19. 发明授权
    • MOS device having a trench gate structure
    • MOS器件具有沟槽栅极结构
    • US5821580A
    • 1998-10-13
    • US840931
    • 1997-04-25
    • Masashi Kuwahara
    • Masashi Kuwahara
    • H01L29/78H01L27/04H01L27/088H01L29/10H01L29/739H01L29/76
    • H01L29/1095H01L27/088H01L29/7397H01L29/7813H01L29/7815
    • In an IGBT of the trench gate structure having a current sensing function, a plurality of trench gates are formed in each of a main current cell region and a current sensing cell region. Of these trench gates, the trench gates formed at end portions of the cell regions have no source regions on their opposing faces so as to prevent channels from being formed at least on the opposing faces. The interval between the opposing channel faces of the main current cell region and current sensing cell region is increased in order that the resistance of a parasitic resistor becomes considerably higher than that of an external resistor leaving an interval between first and second P-type base regions unchanged. The operation imbalance between the cell regions can be prevented by setting the carrier distribution in the current sensing cell region directly under the second base region substantially equal to that in the main current cell region. Thus, both the temperature characteristic and withstanding characteristic of the device can be achieved and the linearity of the main current and sensed current can be improved.
    • 在具有电流感测功能的沟槽栅极结构的IGBT中,在主电流单元区域和电流感测单元区域中的每一个中形成多个沟槽栅极。 在这些沟槽栅极中,形成在单元区域的端部处的沟槽栅极在其相对面上没有源极区域,以便防止至少在相对面上形成沟道。 主电流单元区域和电流感测单元区域的相对通道面之间的间隔增加,使得寄生电阻器的电阻变得显着高于在第一和第二P型基极区域之间留下间隔的外部电阻器的电阻 不变 可以通过将电流感测单元区域中的载流子分布直接设置在基本上等于主电流单元区域的第二基极区域的下方来防止电池区域之间的操作不平衡。 因此,可以实现器件的温度特性和耐受特性,并且可以提高主电流和感测电流的线性。