会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明授权
    • Vision measurement and training system and method of operation thereof
    • 视力测量与训练系统及其操作方法
    • US08668334B2
    • 2014-03-11
    • US11679564
    • 2007-02-27
    • William R. Krenik
    • William R. Krenik
    • A61B3/10
    • A61H5/005A61B3/0033A61B3/024A61B3/032A61B3/036A61B3/08A61H23/02A61H2201/0207A61H2201/10A61H2201/1604A61H2201/165A61H2201/501A61H2201/5043A61H2201/5048A61H2201/5058A61H2201/5092A61H2201/5097
    • A binocular viewer, a method of measuring and training vision that uses a binocular viewer and a vision measurement and training system that employs a computer to control the binocular viewer. In one embodiment, the binocular viewer has left and right display elements and comprises: (1) a variable focal depth optical subsystem located in an optical path between the display elements and a user when the user uses the binocular viewer and (2) a control input coupled to the left and right display elements and the variable focal depth optical subsystem and configured to receive control signals operable to place images on the left and right display elements and vary a focal depth of the variable focal depth optical subsystem. In another embodiment, the binocular viewer lacks the variable focal depth optical subsystem, but the images include at least one feature unique to one of the left and right display elements.
    • 双眼观察者,使用双目观察者的测量和训练视觉的方法以及采用计算机来控制双目观察者的视觉测量和训练系统。 在一个实施例中,双目观察器具有左右显示元件,并且包括:(1)当用户使用双目观察者时,位于显示元件与用户之间的光路中的可变焦深光学子系统,以及(2)控制 输入,耦合到左和右显示元件和可变焦深度光学子系统,并且被配置为接收可操作以将图像放置在左显示元件和右显示元件上并改变可变焦深光学子系统的焦深的控制信号。 在另一个实施例中,双目观察器缺少可变焦深度光学子系统,但是图像包括左和右显示元件之一唯一的至少一个特征。
    • 12. 发明授权
    • Micro-electro-mechanical system having movable element integrated into leadframe-based package
    • 具有集成到基于引线框的封装中的可移动元件的微机电系统
    • US08338208B2
    • 2012-12-25
    • US12969910
    • 2010-12-16
    • Edgar Rolando Zuniga-OrtizWilliam R. Krenik
    • Edgar Rolando Zuniga-OrtizWilliam R. Krenik
    • H01L21/00
    • B81B3/0021B81C1/00238B81C2203/0792H01L2224/16H01L2924/1461H01L2924/1815H01L2924/00
    • A MEMS may integrate movable MEMS parts, such as mechanical elements, flexible membranes, and sensors, with the low-cost device package, leaving the electronics and signal-processing parts in the integrated circuitry of the semiconductor chip. The package may be a leadframe-based plastic molded body having an opening through the thickness of the body. The movable part may be anchored in the body and extend at least partially across the opening. The chip may be flip-assembled to the leads to span across the foil, and may be separated from the foil by a gap. The leadframe may be a prefabricated piece part, or may be fabricated in a process flow with metal deposition on a sacrificial carrier and patterning of the metal layer. The resulting leadframe may be flat or may have an offset structure useful for stacked package-on-package devices.
    • MEMS可以利用低成本器件封装集成可移动MEMS部件,例如机械元件,柔性膜和传感器,将电子器件和信号处理部件留在半导体芯片的集成电路中。 封装可以是具有通过主体厚度的开口的引线框架的塑料模制体。 可移动部分可以锚定在主体中并且至少部分地延伸穿过开口。 芯片可以被翻转组装到引线跨越箔片,并且可以通过间隙与箔片分离。 引线框架可以是预制件部件,或者可以以牺牲载体上的金属沉积和金属层的图案化的工艺流程制造。 所得到的引线框架可以是平坦的,或者可以具有对于堆叠的封装封装器件有用的偏移结构。
    • 15. 发明授权
    • Circuit and method for programmably changing the transconductance of a
transconductor circuit
    • 用于可编程地改变跨导电路的跨导的电路和方法
    • US5994926A
    • 1999-11-30
    • US838300
    • 1997-04-16
    • Patrick P. SiniscalchiDavy H. ChoiWilliam R. Krenik
    • Patrick P. SiniscalchiDavy H. ChoiWilliam R. Krenik
    • H03F3/45H03G1/00H03K5/22
    • H03G1/0023H03F3/45076
    • A programmably variable transconductance circuit (10) and method for varying its transconductance includes first and second current control input devices (16, 18), each having an input (17,19) to which a differential input voltage may be applied. A pair of current steering circuits (26, 28, 30, 32) are each connected in series with a respective one of the first and second current control devices (16, 18) for dividing respective currents in the first and second current control devices (16, 18) between a differential output current path (12, 14) and another current flow path, and a programmable voltage source (90) supplying V.sub.CONTROL is connected to control the current division by the current steering circuits (26, 28, 30, 32). The programmable voltage, V.sub.CONTROL, is provided by a programmable current control loop (90), which incorporates a master transconductance circuit, to establish a constant transconductance independently of temperature variations. A dynamically controllable resistance, such as an MOS transistor (24), or the like, is connected between the first and second current control input devices (16, 18), and a second voltage source (V.sub.GATE) is connected to the dynamically controllable resistance (24) to maintain the dynamically controllable resistance (24) at a constant value.
    • 用于改变其跨导的可编程可变跨导电路(10)和方法包括第一和第二电流控制输入装置(16,18),每个具有可以施加差动输入电压的输入端(17,19)。 一对电流转向电路(26,28,30,32)各自与第一和第二电流控制装置(16,18)中的相应一个串联连接,用于分开第一和第二电流控制装置( 16,28,30,30,40,30,40,30,40,30,40,30,40,30,40,30,40,40,30,40,30,40,40,40,40,43,40,40,40,40,40,40,40,40,40,40,40,40,40,62,62,62,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64 32)。 可编程电压VCONTROL由可编程电流控制回路(90)提供,可编程电流控制回路(90)包含主跨导电路,以独立于温度变化建立恒定跨导。 诸如MOS晶体管(24)等的动态可控电阻连接在第一和第二电流控制输入装置(16,18)之间,第二电压源(VGATE)连接到动态可控电阻 (24)以将所述动态可控电阻(24)保持在恒定值。
    • 16. 发明授权
    • Silicon based sensor apparatus
    • 硅基传感器装置
    • US5625209A
    • 1997-04-29
    • US434816
    • 1995-05-04
    • Mark AppletonWilliam R. Krenik
    • Mark AppletonWilliam R. Krenik
    • G01N27/12H01L23/58
    • G01N27/12Y10S148/035Y10S148/052
    • A biomedical sensor (20) is formed on a semiconductor substrate (22). Insulated dielectric layers (23, 24) are formed on the face and backside of the semiconductor substrate (22). Metal leads (26, 28) contact the substrate (22) through openings in the dielectric layer (23). The leads (26, 28) are also each connected to a set of interleaved longitudinal contact fingers (27, 29). A pair of contacts (30, 32) are formed on the opposite side of the substrate (22) from the contact figures (27, 29). A conductive biologic sample is placed over the interleaf fingers (27, 29), electrical measurements can be made through backside contacts (30, 32) so resistance measurements can be taken.
    • 生物医学传感器(20)形成在半导体衬底(22)上。 绝缘电介质层(23,24)形成在半导体衬底(22)的表面和背面上。 金属引线(26,28)通过介电层(23)中的开口接触基板(22)。 引线(26,28)也各自连接到一组交错的纵向接触指(27,29)。 一对触点(30,32)形成在基板(22)的与接触图(27,29)相反的一侧上。 将导电生物样品放置在中间指状物(27,29)上,可以通过背侧触点(30,32)进行电气测量,因此可以进行电阻测量。
    • 17. 发明授权
    • Integrated dual-slope analog to digital converter with r/c variance
compensation
    • 具有r / c差分补偿的集成双斜率模数转换器
    • US4849757A
    • 1989-07-18
    • US30198
    • 1987-03-25
    • William R. Krenik
    • William R. Krenik
    • H03M1/52H03M1/06
    • H03M1/0619H03M1/52
    • A dual-slope A/D converter circuit has an oscillator (14) whose timing frequency is determined by the value of an oscillator resistor (70) and a oscillator capacitor (72). An integrator (66) integrates an input voltage at a rate determined by an integrating resistor (64) and an integrating capacitor (68). The oscillator resistor (70) and integrator resistor (64) are designed such that their ratio will remain constant despite variations in actual value due to manufacturing inaccuracies. The oscillator capacitor (72) and integrating capacitor (68) are similarly designed. Consequently, an optimum peak integration value can be obtained at full scale input despite variations in actual resistive and capacitive values.
    • 双斜率A / D转换电路具有振荡器(14),其定时频率由振荡电阻(70)和振荡电容器(72)的值确定。 积分器(66)以由积分电阻器(64)和积分电容器(68)确定的速率积分输入电压。 振荡电阻(70)和积分电阻(64)被设计成使得它们的比例将保持恒定,尽管由于制造不准确而导致实际值的变化。 类似地设计振荡电容器(72)和积分电容器(68)。 因此,尽管实际电阻值和电容值有变化,但仍可在满量程输入端获得最佳峰值积分值。
    • 18. 发明申请
    • Touch-sensitive interface and method using orthogonal signaling
    • 使用正交信令的触敏接口和方法
    • US20120056841A1
    • 2012-03-08
    • US12807333
    • 2010-09-02
    • William R. KrenikAnand Dabak
    • William R. KrenikAnand Dabak
    • G06F3/044
    • G06F3/044G06F3/0418
    • A touch screen system includes a capacitive touch screen (1) including a plurality of row conductors (7-1,2 . . . n) and a column conductor (5-1). A plurality of cotemporaneous orthogonal excitation signals (S1(t), S2(t) . . . Sn(t)) are simultaneously driven onto the row conductors, respectively. The capacitively coupled signals on the column conductor may be influenced by a touch (10) on the capacitive touch screen. Receiver circuitry (50) includes a sense amplifier (21-1) coupled to generate an amplifier output signal (r1(t)) in response to signals capacitively coupled onto the column conductor. WHT-based circuitry (35) determines amounts of signal contribution capacitively coupled by each of the excitation signals, respectively, to the amplifier output signal.
    • 触摸屏系统包括电容式触摸屏(1),其包括多个行导体(7-1.2 .n)和列导体(5-1)。 多个同时正交激励信号(S1(t),S2(t)... Sn(t))分别同时被驱动到行导体上。 列导体上的电容耦合信号可能受到电容式触摸屏上的触摸(10)的影响。 接收器电路(50)包括响应于电容耦合到列导体上的信号而耦合以产生放大器输出信号(r1(t))的读出放大器(21-1)。 基于WHT的电路(35)确定分别通过每个激励信号电容耦合到放大器输出信号的信号贡献量。