会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明申请
    • System and Method For Providing A Physical Property Model
    • 提供物理属性模型的系统和方法
    • US20110155389A1
    • 2011-06-30
    • US12890198
    • 2010-09-24
    • Olivier M. BurtzCharlie JingDmitriy A. PavlovScott C. Hornbostel
    • Olivier M. BurtzCharlie JingDmitriy A. PavlovScott C. Hornbostel
    • E21B43/00G06G7/48
    • G01V99/00
    • There is provided a system and method for creating a physical property model representative of a physical property of a region. An exemplary method comprises transforming information from a model domain that represents the physical property model into simulated data in a data domain, the data domain comprising simulated data and measured data representative of a plurality of observations of the region. The exemplary method also comprises determining an areal misfit between the simulated data and the measured data representative of the plurality of observations of the region. The exemplary method additionally comprises performing an evaluation of the areal misfit based on known criteria. The exemplary method comprises adjusting data in the data domain or information in the model domain corresponding to a region in the model domain based on the evaluation of the areal misfit.
    • 提供了用于创建表示区域的物理属性的物理属性模型的系统和方法。 示例性方法包括将来自代表物理属性模型的模型域的信息变换成数据域中的模拟数据,所述数据域包括表示该区域的多个观察值的模拟数据和测量数据。 该示例性方法还包括确定模拟数据与表示该区域的多个观察结果的测量数据之间的区域失配。 该示例性方法还包括基于已知标准执行面积失配的评估。 该示例性方法包括基于区域失配的评估来调整数据域中的数据或模型域中对应于模型域中的区域的信息。
    • 12. 发明申请
    • Method For Correcting The Phase of Electromagnetic Data
    • 电磁数据相位校正方法
    • US20100176791A1
    • 2010-07-15
    • US12303673
    • 2007-06-12
    • Thomas A DickensCharlie JingDennis E. Willen
    • Thomas A DickensCharlie JingDennis E. Willen
    • G01V3/12
    • G01V3/12G01V3/083
    • Method for identifying, determining and correcting source-related phase errors in data from a controlled source electromagnetic survey by using data from ordinary survey receivers, i.e. without benefit of source monitoring data. Abrupt anomalies indicating source malfunctions are identified (71) in the time domain by plotting time intervals between neighboring zero crossings or by zero-lag cross correlation between consecutive bins of receiver data, and the amount of the time error (73) can be determined by performing cross correlation between two bins on either side of an anomaly. In the frequency domain, transmitter anomalies can be identified by looking for discontinuities in plots of phase vs. offset, and the corrective phase shift can be determined by matching the phase on one side of the anomaly to that on the other side. A global time/phase shift (76) can be determined by using phase frequency-scaling behavior at near offsets.
    • 用于通过使用普通测量接收机的数据来识别,确定和校正来自受控源电磁勘测的源相关相位误差的方法,即不受源监测数据的益处。 在时域中通过绘制相邻过零点之间的时间间隔或接收器数据的连续箱之间的零时相互相关来识别(71)在时域中的突发异常,并且时间误差量(73)可以由 在异常的任一侧执行两个箱之间的互相关。 在频域中,可以通过查找相位偏移图中的不连续性来识别发射机异常,并且可以通过将异常一侧的相位与另一侧的相位匹配来确定校正相移。 全局时间/相移(76)可以通过使用接近偏移的相位频率缩放行为来确定。
    • 18. 发明授权
    • Method for determining orientation of electromagnetic receivers
    • 确定电磁接收机方向的方法
    • US08471555B2
    • 2013-06-25
    • US13120596
    • 2009-10-27
    • Dmitriy A. PavlovCharlie JingDennis E. Willen
    • Dmitriy A. PavlovCharlie JingDennis E. Willen
    • G01B7/30
    • G01V3/12G01V3/083
    • Method for determining receiver orientation angles in a controlled source electromagnetic survey, by analyzing the survey data. For a given survey receiver, two data subsets are selected. (43, 44). The two subsets may be from two offset ranges that are geometrically symmetrical relative to the receiver location. Alternatively, the second subset may be a computer simulation of actual survey data. In either instance, an orientation is assumed for the receiver (45), and that orientation is used to compare component data from the two subsets that can be expected to match if the assumed orientation angle(s) is (are) correct (46). The mismatch is ascertained, and the assumed orientation is adjusted (45) and the process is repeated.
    • 通过分析调查数据确定受控源电磁勘测中的接收器方位角的方法。 对于给定的测量接收器,选择两个数据子集。 (43,44)。 两个子集可以来自相对于接收器位置几何对称的两个偏移范围。 或者,第二子集可以是实际调查数据的计算机模拟。 在任一情况下,假设接收器(45)的方向,并且该方向用于比较来自两个子集的分量数据,如果假定的取向角(s)是正确的(46),则可以预期匹配 。 确定不匹配,并调整假设方向(45),并重复该过程。
    • 20. 发明授权
    • Joint inversion with unknown lithology
    • 联合反演与未知的岩性
    • US09453929B2
    • 2016-09-27
    • US14111519
    • 2012-03-09
    • Jan SchmedesChristopher J. DiCaprioCharlie JingGarrett M. LeahyAnoop A. MullurRebecca L. Saltzer
    • Jan SchmedesChristopher J. DiCaprioCharlie JingGarrett M. LeahyAnoop A. MullurRebecca L. Saltzer
    • G01V1/28G01V3/38G01V11/00
    • G01V1/282G01V3/38G01V11/00
    • Method for joint inversion of geophysical data to obtain 3-D models of geological parameters for subsurface regions of unknown lithology. Two or more data sets of independent geophysical data types are obtained, e.g. seismic and electromagnetic. Then they are jointly inverted, using structural coupling, to infer geophysical parameter volumes, e.g. acoustic velocity and resistivity. Regions of common lithology are next identified based on similar combinations of geophysical parameters. Then a joint inversion of the multiple data types is performed in which rock physics relations vary spatially in accordance with the now-known lithology, and 3-D models of geological properties such as shale content and fracture density are inferred. The computational grid for the last inversion may be defined by the lithology regions, resulting in average geological properties over such regions, which may then be perturbed to determine uncertainty in lithologic boundaries.
    • 联合反演地球物理数据的方法,以获得未知岩性地下地区3维地质参数模型。 获得独立的地球物理数据类型的两个或多个数据集,例如。 地震和电磁。 然后,它们共同倒置,使用结构耦合,推断地球物理参数体积,例如 声速和电阻率。 下面根据地球物理参数的类似组合来确定共同岩性区域。 然后进行多种数据类型的联合反演,其中岩石物理关系根据现在已知的岩性在空间上变化,并且推断出诸如页岩含量和裂缝密度的地质特征的3-D模型。 最后反演的计算网格可以由岩性区域定义,导致在这些区域上的平均地质特征,然后可以扰动以确定岩性边界的不确定性。