会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • Joint Inversion with Unknown Lithology
    • 联合反演与未知岩性
    • US20140180593A1
    • 2014-06-26
    • US14111519
    • 2012-03-09
    • Jan SchmedesChristopher J. DiCaprioCharlie JingGarrett M. LeahyAnoop A. MullurRebecca L. Saltzer
    • Jan SchmedesChristopher J. DiCaprioCharlie JingGarrett M. LeahyAnoop A. MullurRebecca L. Saltzer
    • G01V1/28G01V3/38
    • G01V1/282G01V3/38G01V11/00
    • Method for joint inversion of geophysical data to obtain 3-D models of geological parameters for subsurface regions of unknown lithology. Two or more data sets of independent geophysical data types are obtained, e.g. seismic and electromagnetic. Then they are jointly inverted, using structural coupling, to infer geophysical parameter volumes, e.g. acoustic velocity and resistivity. Regions of common lithology are next identified based on similar combinations of geophysical parameters. Then a joint inversion of the multiple data types is performed in which rock physics relations vary spatially in accordance with the now-known lithology, and 3-D models of geological properties such as shale content and fracture density are inferred. The computational grid for the last inversion may be defined by the lithology regions, resulting in average geological properties over such regions, which may then be perturbed to determine uncertainty in lithologic boundaries.
    • 联合反演地球物理数据的方法,以获得未知岩性地下地区3维地质参数模型。 获得独立的地球物理数据类型的两个或多个数据集,例如。 地震和电磁。 然后,它们共同倒置,使用结构耦合,推断地球物理参数体积,例如 声速和电阻率。 下面根据地球物理参数的类似组合来确定共同岩性区域。 然后进行多种数据类型的联合反演,其中岩石物理关系根据现在已知的岩性在空间上变化,并且推断出诸如页岩含量和裂缝密度的地质特征的3-D模型。 最后反演的计算网格可以由岩性区域定义,导致在这些区域上的平均地质特征,然后可以扰动以确定岩性边界的不确定性。
    • 5. 发明授权
    • Joint inversion with unknown lithology
    • 联合反演与未知的岩性
    • US09453929B2
    • 2016-09-27
    • US14111519
    • 2012-03-09
    • Jan SchmedesChristopher J. DiCaprioCharlie JingGarrett M. LeahyAnoop A. MullurRebecca L. Saltzer
    • Jan SchmedesChristopher J. DiCaprioCharlie JingGarrett M. LeahyAnoop A. MullurRebecca L. Saltzer
    • G01V1/28G01V3/38G01V11/00
    • G01V1/282G01V3/38G01V11/00
    • Method for joint inversion of geophysical data to obtain 3-D models of geological parameters for subsurface regions of unknown lithology. Two or more data sets of independent geophysical data types are obtained, e.g. seismic and electromagnetic. Then they are jointly inverted, using structural coupling, to infer geophysical parameter volumes, e.g. acoustic velocity and resistivity. Regions of common lithology are next identified based on similar combinations of geophysical parameters. Then a joint inversion of the multiple data types is performed in which rock physics relations vary spatially in accordance with the now-known lithology, and 3-D models of geological properties such as shale content and fracture density are inferred. The computational grid for the last inversion may be defined by the lithology regions, resulting in average geological properties over such regions, which may then be perturbed to determine uncertainty in lithologic boundaries.
    • 联合反演地球物理数据的方法,以获得未知岩性地下地区3维地质参数模型。 获得独立的地球物理数据类型的两个或多个数据集,例如。 地震和电磁。 然后,它们共同倒置,使用结构耦合,推断地球物理参数体积,例如 声速和电阻率。 下面根据地球物理参数的类似组合来确定共同岩性区域。 然后进行多种数据类型的联合反演,其中岩石物理关系根据现在已知的岩性在空间上变化,并且推断出诸如页岩含量和裂缝密度的地质特征的3-D模型。 最后反演的计算网格可以由岩性区域定义,导致在这些区域上的平均地质特征,然后可以扰动以确定岩性边界的不确定性。
    • 7. 发明申请
    • Hydrocarbon Detection With Passive Seismic Data
    • 被动地震数据的碳氢化合物检测
    • US20110255371A1
    • 2011-10-20
    • US13140749
    • 2009-12-14
    • Charlie JingJim J. CarazzoneEva-Maria RumpfhuberRebecca L. SaltzerThomas A. DickensAnoop A. Mullur
    • Charlie JingJim J. CarazzoneEva-Maria RumpfhuberRebecca L. SaltzerThomas A. DickensAnoop A. Mullur
    • G01V1/28
    • G01V1/28G01V1/288G01V11/00G01V2210/123
    • Method for using seismic data from earthquakes to address the low frequency lacuna problem in traditional hydrocarbon exploration methods. Seismometers with frequency response Select Receivers of Desired Frequency Ranges and Design Survey Seismometer Configuration down to about 1 Hz are placed over a target subsurface region in an array with spacing suitable for hydrocarbon exploration (21). Data are collected over a long (weeks or months) time period (22). Segments of the data (44) are identified with known events from earthquake catalogs (43). Those data segments are analyzed using techniques such as trayeltime delay measurements (307) or receiver function calculations (46) and then are combined with one or more other types of geophysical data acquired from the target region, using joint inversion (308-310) in some embodiments of the method, to infer physical features of the subsurface indicative of hydrocarbon potential or lack thereof (26).
    • 采用地震数据解决传统碳氢化合物勘探方法中低频空隙问题的方法。 具有频率响应的地震仪选择接收器的期望频率范围和设计测量地震仪配置低至约1Hz放置在具有适合于碳氢化合物勘探的间隔的阵列中的目标地下区域(21)。 数据收集时间长(数周或数月)(22)。 数据(44)的分段用来自地震目录(43)的已知事件来识别。 使用诸如托盘时间延迟测量(307)或接收机功能计算(46)的技术分析那些数据段,然后使用在目标区域中获取的一个或多个其他类型的地球物理数据,使用联合反演(308-310) 该方法的一些实施方案,用于推断表示碳氢化合物潜力或其缺乏的地下物理特征(26)。
    • 9. 发明申请
    • Method For Determining Orientation of Elecromagnetic Receivers
    • 确定电磁接收器方向的方法
    • US20110193554A1
    • 2011-08-11
    • US13120596
    • 2009-10-27
    • Dmitriy A. PavlovCharlie JingDennis E. Willen
    • Dmitriy A. PavlovCharlie JingDennis E. Willen
    • G01B7/30
    • G01V3/12G01V3/083
    • Method for determining receiver orientation angles in a controlled source electromagnetic survey, by analyzing the survey data. For a given survey receiver, two data subsets are selected. (43, 44). The two subsets may be from two offset ranges that are geometrically symmetrical relative to the receiver location. Alternatively, the second subset may be a computer simulation of actual survey data. In either instance, an orientation is assumed for the receiver (45), and that orientation is used to compare component data from the two subsets that can be expected to match if the assumed orientation angle(s) is (are) correct (46). The mismatch is ascertained, and the assumed orientation is adjusted (45) and the process is repeated.
    • 通过分析调查数据确定受控源电磁勘测中的接收器方位角的方法。 对于给定的测量接收器,选择两个数据子集。 (43,44)。 两个子集可以来自相对于接收器位置几何对称的两个偏移范围。 或者,第二子集可以是实际调查数据的计算机模拟。 在任一情况下,假设接收器(45)的方向,并且该方向用于比较来自两个子集的分量数据,如果假定的取向角(s)是正确的(46),则可以预期匹配 。 确定不匹配,并调整假设方向(45),并重复该过程。