会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • Seismic Velocity Model Updating and Imaging with Elastic Wave Imaging
    • 地震速度模型更新和成像与弹性波成像
    • US20140307928A1
    • 2014-10-16
    • US14188573
    • 2014-02-24
    • Charlie JingWarren S. Ross
    • Charlie JingWarren S. Ross
    • G01V1/30
    • G01V1/301G01V1/303G01V2210/51G01V2210/643G01V2210/671G01V2210/679
    • Method for building a seismic imaging velocity model, particularly at the boundary of a geo-body, and to perform imaging, by taking into account the elastic reflection and scattering information in the seismic data. More illumination of the base and flanks (or in general, the boundary) of the geo-body is provided from (a) inside of the geo-body (502), with elastically converted waves at the geo-body boundary used (via elastic RTM flooding); and (b) from outside the geo-body (503), by utilizing prism waves with elastic RTM to handle the phase correctly in the model building step. The increased illumination and correct elastic phase are used for geo-body boundary determination. Elastic RTM is then applied (505), along with the elastically derived imaging velocity model, to maximize the use of elastic energy in the imaging step, and to obtain the correct image with the correct phase.
    • 通过考虑地震数据中的弹性反射和散射信息,构建地震成像速度模型,特别是在地球体边界处进行成像的方法。 从(a)地质体(502)的内部提供地基体的基部和侧面(或一般地,边界)的更多照明,在所使用的地球体边界处通过弹性转换的波(通过弹性 RTM洪水); 和(b)通过利用具有弹性RTM的棱镜波在地面体外部(503)处理模型建立步骤中的相位。 增加的照明和正确的弹性相用于地球体边界的确定。 然后应用弹性RTM(505)以及弹性导出的成像速度模型,以在成像步骤中最大限度地利用弹性能量,并以正确的相位获得正确的图像。
    • 3. 发明申请
    • Joint Inversion with Unknown Lithology
    • 联合反演与未知岩性
    • US20140180593A1
    • 2014-06-26
    • US14111519
    • 2012-03-09
    • Jan SchmedesChristopher J. DiCaprioCharlie JingGarrett M. LeahyAnoop A. MullurRebecca L. Saltzer
    • Jan SchmedesChristopher J. DiCaprioCharlie JingGarrett M. LeahyAnoop A. MullurRebecca L. Saltzer
    • G01V1/28G01V3/38
    • G01V1/282G01V3/38G01V11/00
    • Method for joint inversion of geophysical data to obtain 3-D models of geological parameters for subsurface regions of unknown lithology. Two or more data sets of independent geophysical data types are obtained, e.g. seismic and electromagnetic. Then they are jointly inverted, using structural coupling, to infer geophysical parameter volumes, e.g. acoustic velocity and resistivity. Regions of common lithology are next identified based on similar combinations of geophysical parameters. Then a joint inversion of the multiple data types is performed in which rock physics relations vary spatially in accordance with the now-known lithology, and 3-D models of geological properties such as shale content and fracture density are inferred. The computational grid for the last inversion may be defined by the lithology regions, resulting in average geological properties over such regions, which may then be perturbed to determine uncertainty in lithologic boundaries.
    • 联合反演地球物理数据的方法,以获得未知岩性地下地区3维地质参数模型。 获得独立的地球物理数据类型的两个或多个数据集,例如。 地震和电磁。 然后,它们共同倒置,使用结构耦合,推断地球物理参数体积,例如 声速和电阻率。 下面根据地球物理参数的类似组合来确定共同岩性区域。 然后进行多种数据类型的联合反演,其中岩石物理关系根据现在已知的岩性在空间上变化,并且推断出诸如页岩含量和裂缝密度的地质特征的3-D模型。 最后反演的计算网格可以由岩性区域定义,导致在这些区域上的平均地质特征,然后可以扰动以确定岩性边界的不确定性。
    • 5. 发明授权
    • Method for correcting the phase of electromagnetic data
    • 电磁数据相位校正方法
    • US08121789B2
    • 2012-02-21
    • US12303673
    • 2007-06-12
    • Thomas A. DickensCharlie JingDennis E. Willen
    • Thomas A. DickensCharlie JingDennis E. Willen
    • G01V1/40
    • G01V3/12G01V3/083
    • Method for identifying, determining and correcting source-related phase errors in data from a controlled source electromagnetic survey by using data from ordinary survey receivers, i.e. without benefit of source monitoring data. Abrupt anomalies indicating source malfunctions are identified (71) in the time domain by plotting time intervals between neighboring zero crossings or by zero-lag cross correlation between consecutive bins of receiver data, and the amount of the time error (73) can be determined by performing cross correlation between two bins on either side of an anomaly. In the frequency domain, transmitter anomalies can be identified by looking for discontinuities in plots of phase vs. offset, and the corrective phase shift can be determined by matching the phase on one side of the anomaly to that on the other side. A global time/phase shift (76) can be determined by using phase frequency-scaling behavior at near offsets.
    • 用于通过使用普通测量接收机的数据来识别,确定和校正来自受控源电磁勘测的源相关相位误差的方法,即不受源监测数据的益处。 在时域中通过绘制相邻过零点之间的时间间隔或接收器数据的连续箱之间的零时相互相关来识别(71)在时域中的突发异常,并且时间误差量(73)可以由 在异常的任一侧执行两个箱之间的互相关。 在频域中,可以通过查找相位偏移图中的不连续性来识别发射机异常,并且可以通过将异常一侧的相位与另一侧的相位匹配来确定校正相移。 全局时间/相移(76)可以通过使用接近偏移的相位频率缩放行为来确定。
    • 10. 发明申请
    • Method For Geophysical Imaging
    • 地球物理成像方法
    • US20110264421A1
    • 2011-10-27
    • US13018711
    • 2011-02-01
    • Charlie JingDennis E. Willen
    • Charlie JingDennis E. Willen
    • G06F17/10G06G7/48
    • G01V3/38
    • Method for transforming electromagnetic survey data acquired from a subsurface region to a subsurface resistivity model indicative of hydrocarbon accumulations or lack thereof. In one embodiment, data are selected for two or more non-zero frequencies (100), and a structural model of the region is developed based on available geological or geophysical information. An initial resistivity model of the region is developed based on the structural model (101), and the selected data are inverted to update the resistivity model (106) by iterative forward modeling (103) and minimizing an objective function (105) including a term measuring mismatch between model synthesized data and measured survey data, and another term being a diffusive regularization term that smoothes the resistivity model (104). The regularization term can involve a structure or geology constraint, such as an anisotropic resistivity symmetry axis or a structure axis, determined from the a priori information (102).
    • 将从地下区域获取的电磁勘测数据转换为表示碳氢化合物积聚或缺乏的地下电阻率模型的方法。 在一个实施例中,为两个或多个非零频率(100)选择数据,并且基于可用的地质或地球物理信息来开发该区域的结构模型。 基于结构模型(101)开发该区域的初始电阻率模型,并且通过迭代正向建模(103)反转所选择的数据以更新电阻率模型(106)并最小化包括项目的目标函数(105) 测量模型合成数据与测量的测量数据之间的不匹配,另一个术语是平滑电阻率模型的扩散正则化项(104)。 正则化术语可以涉及从先验信息(102)确定的结构或地质学约束,例如各向异性电阻率对称轴或结构轴。