会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • System and Method For Providing A Physical Property Model
    • 提供物理属性模型的系统和方法
    • US20110155389A1
    • 2011-06-30
    • US12890198
    • 2010-09-24
    • Olivier M. BurtzCharlie JingDmitriy A. PavlovScott C. Hornbostel
    • Olivier M. BurtzCharlie JingDmitriy A. PavlovScott C. Hornbostel
    • E21B43/00G06G7/48
    • G01V99/00
    • There is provided a system and method for creating a physical property model representative of a physical property of a region. An exemplary method comprises transforming information from a model domain that represents the physical property model into simulated data in a data domain, the data domain comprising simulated data and measured data representative of a plurality of observations of the region. The exemplary method also comprises determining an areal misfit between the simulated data and the measured data representative of the plurality of observations of the region. The exemplary method additionally comprises performing an evaluation of the areal misfit based on known criteria. The exemplary method comprises adjusting data in the data domain or information in the model domain corresponding to a region in the model domain based on the evaluation of the areal misfit.
    • 提供了用于创建表示区域的物理属性的物理属性模型的系统和方法。 示例性方法包括将来自代表物理属性模型的模型域的信息变换成数据域中的模拟数据,所述数据域包括表示该区域的多个观察值的模拟数据和测量数据。 该示例性方法还包括确定模拟数据与表示该区域的多个观察结果的测量数据之间的区域失配。 该示例性方法还包括基于已知标准执行面积失配的评估。 该示例性方法包括基于区域失配的评估来调整数据域中的数据或模型域中对应于模型域中的区域的信息。
    • 2. 发明授权
    • Method for determining orientation of electromagnetic receivers
    • 确定电磁接收机方向的方法
    • US08471555B2
    • 2013-06-25
    • US13120596
    • 2009-10-27
    • Dmitriy A. PavlovCharlie JingDennis E. Willen
    • Dmitriy A. PavlovCharlie JingDennis E. Willen
    • G01B7/30
    • G01V3/12G01V3/083
    • Method for determining receiver orientation angles in a controlled source electromagnetic survey, by analyzing the survey data. For a given survey receiver, two data subsets are selected. (43, 44). The two subsets may be from two offset ranges that are geometrically symmetrical relative to the receiver location. Alternatively, the second subset may be a computer simulation of actual survey data. In either instance, an orientation is assumed for the receiver (45), and that orientation is used to compare component data from the two subsets that can be expected to match if the assumed orientation angle(s) is (are) correct (46). The mismatch is ascertained, and the assumed orientation is adjusted (45) and the process is repeated.
    • 通过分析调查数据确定受控源电磁勘测中的接收器方位角的方法。 对于给定的测量接收器,选择两个数据子集。 (43,44)。 两个子集可以来自相对于接收器位置几何对称的两个偏移范围。 或者,第二子集可以是实际调查数据的计算机模拟。 在任一情况下,假设接收器(45)的方向,并且该方向用于比较来自两个子集的分量数据,如果假定的取向角(s)是正确的(46),则可以预期匹配 。 确定不匹配,并调整假设方向(45),并重复该过程。
    • 3. 发明申请
    • Method For Obtaining Resistivity From Controlled Source Electromagnetic Data
    • 从受控源电磁数据获取电阻率的方法
    • US20100332198A1
    • 2010-12-30
    • US12280330
    • 2007-02-15
    • Leslie A. WahrmundKenneth E. GreenDmitriy A. PavlovLeonard J. Srnka
    • Leslie A. WahrmundKenneth E. GreenDmitriy A. PavlovLeonard J. Srnka
    • G06F17/10
    • G01V3/12G01V3/083
    • Method for generating a three-dimensional resistivity data volume for a subsurface region from an initial resistivity model and measured electromagnetic field data from an electromagnetic survey of the region, where the initial resistivity model is preferably obtained by performing multiple ID inversions of the measured data [100]. The resulting resistivity depth profiles are then registered at proper 3D positions [102]. The 3D electromagnetic response is simulated [106] assuming the resistivity structure is given by the initial resistivity model. The measured electromagnetic field data volume is scaled by the simulated results [108] and the ratios are registered at proper 3D positions [110] producing a ratio data volume [112]. A 3D resistivity volume is then generated by multiplying the initial resistivity volume by the ratio data volume (or some function of it), location-by location [114]. A related method emphasizes deeper resistive anomalies over masking effects of shallow anomalies.
    • 用于从初始电阻率模型生成用于地下区域的三维电阻率数据体积的方法以及来自该区域的电磁勘测的测量的电磁场数据,其中初始电阻率模型优选地通过执行测量数据的多个ID反转来获得[ 100]。 然后将所得到的电阻率深度分布记录在适当的3D位置[102]。 假设电阻率结构由初始电阻率模型给出,3D电磁响应被模拟[106]。 测量的电磁场数据体积由模拟结果[108]缩放,并且比率被记录在适当的3D位置[110],产生比率数据量[112]。 然后通过将初始电阻率乘以比率数据量(或其一些功能),逐位置[114]来生成3D电阻率体积。 相关方法强调了较浅的异常屏蔽效应的电阻异常。
    • 5. 发明授权
    • Method for obtaining resistivity from controlled source electromagnetic data
    • 从受控源电磁数据获取电阻率的方法
    • US08014988B2
    • 2011-09-06
    • US12280330
    • 2007-02-15
    • Leslie A. WahrmundKenneth E. GreenDmitriy A. PavlovLeonard J. Srnka
    • Leslie A. WahrmundKenneth E. GreenDmitriy A. PavlovLeonard J. Srnka
    • G06G7/48G06F7/60G06F17/10G01V1/40G01V3/18G01V5/04G01V9/00
    • G01V3/12G01V3/083
    • Method for generating a three-dimensional resistivity data volume for a subsurface region from an initial resistivity model and measured electromagnetic field data from an electromagnetic survey of the region, where the initial resistivity model is preferably obtained by performing multiple ID inversions of the measured data [100]. The resulting resistivity depth profiles are then registered at proper 3D positions [102]. The 3D electromagnetic response is simulated [106] assuming the resistivity structure is given by the initial resistivity model. The measured electromagnetic field data volume is scaled by the simulated results [108] and the ratios are registered at proper 3D positions [110] producing a ratio data volume [112]. A 3D resistivity volume is then generated by multiplying the initial resistivity volume by the ratio data volume (or some function of it), location-by location [114]. A related method emphasizes deeper resistive anomalies over masking effects of shallow anomalies.
    • 用于从初始电阻率模型生成用于地下区域的三维电阻率数据体积的方法以及来自该区域的电磁勘测的测量的电磁场数据,其中初始电阻率模型优选地通过执行测量数据的多个ID反转来获得[ 100]。 然后将所得到的电阻率深度分布记录在适当的3D位置[102]。 假设电阻率结构由初始电阻率模型给出,3D电磁响应被模拟[106]。 测量的电磁场数据体积由模拟结果[108]缩放,并且比率被记录在适当的3D位置[110],产生比率数据量[112]。 然后通过将初始电阻率乘以比率数据量(或其一些功能),逐位置[114]来生成3D电阻率体积。 相关方法强调了较浅的异常屏蔽效应的电阻异常。
    • 6. 发明授权
    • System and method for providing a physical property model
    • 提供物理属性模型的系统和方法
    • US08706462B2
    • 2014-04-22
    • US12890198
    • 2010-09-24
    • Olivier M. BurtzCharlie JingDmitriy A. PavlovScott C. Hornbostel
    • Olivier M. BurtzCharlie JingDmitriy A. PavlovScott C. Hornbostel
    • G06F9/455
    • G01V99/00
    • There is provided a system and method for creating a physical property model representative of a physical property of a region. An exemplary method comprises transforming information from a model domain that represents the physical property model into simulated data in a data domain, the data domain comprising simulated data and measured data representative of a plurality of observations of the region. The exemplary method also comprises determining an areal misfit between the simulated data and the measured data representative of the plurality of observations of the region. The exemplary method additionally comprises performing an evaluation of the areal misfit based on known criteria. The exemplary method comprises adjusting data in the data domain or information in the model domain corresponding to a region in the model domain based on the evaluation of the areal misfit.
    • 提供了用于创建表示区域的物理属性的物理属性模型的系统和方法。 示例性方法包括将来自代表物理属性模型的模型域的信息变换成数据域中的模拟数据,所述数据域包括表示该区域的多个观察值的模拟数据和测量数据。 该示例性方法还包括确定模拟数据与表示该区域的多个观察结果的测量数据之间的区域失配。 该示例性方法还包括基于已知标准执行面积失配的评估。 该示例性方法包括基于区域失配的评估来调整数据域中的数据或模型域中对应于模型域中的区域的信息。
    • 10. 发明授权
    • Time lapse analysis with electromagnetic data
    • 电磁数据的时间流逝分析
    • US08437961B2
    • 2013-05-07
    • US12280509
    • 2007-03-06
    • Leonard J. SrnkaJames J. CarazzoneDmitriy A. Pavlov
    • Leonard J. SrnkaJames J. CarazzoneDmitriy A. Pavlov
    • G01V1/40G06F11/30
    • G01V3/083G01V3/12
    • Method for determining time-dependent changes [73] in the earth vertical and horizontal electrical resistivity and fluid saturations from offshore electromagnetic survey measurements. The method requires both online and offline data, which should include at least one electromagnetic field component sensitive at least predominantly to vertical resistivity and another component sensitive at least predominately to horizontal resistivity [62]. Using a horizontal electric dipole source, online Ez and offline Hz measurements are preferred. For a horizontal magnetic dipole source, online H2 and offline E2 data are preferred. Magnetotelluric data may be substituted for controlled source data sensitive at least predominantly to horizontal resistivity. Maxwell's equations are solved by forward modeling [64,65] or by inversion [66,67], using resistivity models of the subsurface that are either isotropic contrast, and [64,66] or anisotropic [65,67]. Fluid saturation is determined from the vertical and horizontal resistivities using empirical relations or rock physics models [70].
    • 用于确定海洋电磁测量测量中地球垂直和水平电阻率和流体饱和度的时间依赖变化的方法[73]。 该方法需要在线和离线数据,其中应包括至少一个电磁场分量,至少主要是垂直电阻率敏感,另一个成分至少主要影响水平电阻[62]。 使用水平电偶极子源,在线Ez和离线Hz测量是首选。 对于水平磁偶极子源,优选在线H2和离线E2数据。 电磁数据可以代替至少主要是水平电阻率敏感的受控源数据。 麦克斯韦方程通过正演模拟[64,65]或反演[66,67],使用各向同性对比度的地下电阻率模型[64,66]或各向异性[65,67]来求解。 使用经验关系或岩石物理模型从垂直和水平电阻率确定流体饱和度[70]。