会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明专利
    • Planar waveguide
    • 平面波形
    • JP2012013931A
    • 2012-01-19
    • JP2010150030
    • 2010-06-30
    • Nagoya Univ国立大学法人名古屋大学
    • EBIZUKA NOBORUISHIKAWA KENJIKONDO HIROKIHORI MASARU
    • G02B6/122
    • PROBLEM TO BE SOLVED: To provide a planar waveguide having a small-sized hybrid lens having a large NA and a little loss.SOLUTION: This planar waveguide includes: a clad layer; a core layer superposed on the surface side of the clad layer and having a refractive index higher than that of the clad layer; and a hybrid lens section formed on the surface or the interior of the core layer, having a refractive index higher than that of the clad layer, and having a different refractive index from that of the core layer. The hybrid lens section of this planar waveguide includes: a geometric grating part, which is a diffractive lens, or a dioptric lens part, which is symmetric about an optical axis and has a substantially serrate shape whose intervals become narrower as it separates farther from the optical axis; and a VP grating part, which is a diffractive lens, provided distant from the optical axis with respect to the geometric grating part or the dioptric lens part, and whose intervals become narrower as it separates farther from the optical axis.
    • 要解决的问题:提供具有NA大且少量损失的小型混合透镜的平面波导。 解决方案:该平面波导包括:覆层; 芯层,叠层在覆盖层的表面侧,折射率高于覆盖层的折射率; 以及形成在芯层的表面或内部的折射率高于包层的折射率并且具有与芯层的折射率不同的折射率的混合透镜部。 这种平面波导的混合透镜部分包括:作为衍射透镜的几何光栅部分或折射透镜部分,其与光轴对称,并且具有基本上锯齿形状,其间隔变得更窄,因为其与 光轴; 以及作为衍射透镜的VP光栅部分,其相对于几何光栅部分或屈光透镜部分远离光轴,并且随着与光轴分离的间隔变窄,其间隔变窄。 版权所有(C)2012,JPO&INPIT
    • 3. 发明专利
    • Method for producing carbon nanotubes
    • 生产碳纳米管的方法
    • JP2014028733A
    • 2014-02-13
    • JP2012275890
    • 2012-12-18
    • Toyota Motor Corpトヨタ自動車株式会社Nagoya Univ国立大学法人名古屋大学
    • KATAYAMA YUKIHISAHORI MASARUKONDO HIROKI
    • C01B31/02B82Y40/00C23C16/26
    • PROBLEM TO BE SOLVED: To provide a method for producing carbon nanotubes (CNT's) capable of controlling spacing between CNT's over a broad range easily and a low cost.SOLUTION: The method for producing carbon nanotubes includes a carbon nanotube growth step of growing carbon nanotubes on a surface of a substrate by decomposing, with a plasma, a source gas including a carbon source gas and by contacting, with the surface of the substrate, the carbon source gas thus decomposed. There is placed a blocking member which is capable of permitting arrival, at the substrate surface, of the carbon source gas decomposed in a plasma generating region and, on the other hand, of blocking the arrival, at the substrate surface, of the carbon source gas decomposed within the plasma generating region. The source gas further includes a nitrogen-containing gas having a molecular structure containing a nitrogen atom, and a content of nitrogen atoms derived from the nitrogen-containing gas in the source gas is 20 mg/L or less.
    • 要解决的问题:提供能够容易地控制CNT在宽范围内控制间隔的碳纳米管(CNT)的制造方法和低成本。解决方案:碳纳米管的制造方法包括生长碳纳米管的碳纳米管生长步骤 通过用等离子体分解包含碳源气体的源气体并通过与基板的表面接触由此分解的碳源气体而在基板的表面上。 放置有阻挡构件,其能够允许在等离子体产生区域中分解的碳源气体在基板表面到达,另一方面阻止碳源的到达基板表面 气体在等离子体产生区域内分解。 源气体还包括具有含氮原子的分子结构的含氮气体,源气体中的含氮气体的氮原子含量为20mg / L以下。
    • 4. 发明专利
    • Grism, manufacturing method of the same, and optical device comprising the same
    • GRISM及其制造方法以及包含其的光学装置
    • JP2012013930A
    • 2012-01-19
    • JP2010150028
    • 2010-06-30
    • Nagoya Univ国立大学法人名古屋大学
    • EBIZUKA NOBORUISHIKAWA KENJIKONDO HIROKIHORI MASARU
    • G02B5/18G01J3/14G01J3/18G02B5/04
    • PROBLEM TO BE SOLVED: To provide a grism with high transmittance in a vacuum ultraviolet range.SOLUTION: A grism is provided which comprises a prism and a diffraction grating having a plurality of binary-type diffraction gratings. In the grism, the prism is formed with a first optical material which is at least one selected from the group consisting of lithium fluoride and magnesium fluoride, the binary-type diffraction gratings are formed with a second optical material which is at least one selected from the group consisting of lithium fluoride and magnesium fluoride, and the root-mean-square value (rms value) of the surface roughness of the binary-type diffraction gratings is equal to or less than 5 nm. The grism can be used preferably in a vacuum ultraviolet range from 200 nm to the absorption edge wavelength on a short wavelength side in which the refractive indices of the lithium fluoride and the magnesium fluoride vary significantly.
    • 要解决的问题:提供在真空紫外线范围内具有高透射率的棱镜。 解决方案:提供了一种棱镜,其包括棱镜和具有多个二进制型衍射光栅的衍射光栅。 在棱镜中,棱镜由选自氟化锂和氟化镁中的至少一种的第一光学材料形成,二元型衍射光栅形成有第二光学材料,该第二光学材料是从 由氟化锂和氟化镁组成的组以及二元型衍射光栅的表面粗糙度的均方根值(均方根值)等于或小于5nm。 优选在氟化锂和氟化镁的折射率显着变化的短波长侧的200nm的吸收边缘波长的真空紫外线范围内使用棱镜。 版权所有(C)2012,JPO&INPIT
    • 5. 发明专利
    • カーボンナノウォールを用いた電子デバイス
    • 使用碳纳米管的电子器件
    • JP2014225679A
    • 2014-12-04
    • JP2014136300
    • 2014-07-01
    • 国立大学法人名古屋大学Nagoya Univ
    • HORI MASARUKONDO HIROKIHIRAMATSU MINEOKANO HIROYUKI
    • H01L29/786B82Y30/00C01B31/02H01L21/205H01L29/06H01L51/05H01L51/30
    • 【課題】カーボンナノウォールの選択成長方法を提供すること。【解決手段】SiO2からなる基板100上に、正方形が三角格子状に配列されたパターンのTi膜101を形成した。次に、SiO2基板100上にカーボンナノウォールを成長させた。そして、Tiからのカーボンナノウォールの成長開始時間よりも長く、SiO2からのカーボンナノウォールの成長開始時間よりも短い時間で成長を終了させた。ここで、SiO2からのカーボンナノウォールの成長開始時間は、Tiからの成長開始時間よりも長い。その結果、SiO2基板100上のうち、Ti膜101が形成されずにSiO2が露出している領域にはカーボンナノウォールが成長せず、Ti膜101上にのみ、カーボンナノウォール102が形成された。【選択図】図5
    • 要解决的问题:提供碳纳米壁的选择性生长方法。解决方案:在由SiO组成的基板100上形成其中正方形排列成三角形格子的图案的Ti膜101。 接下来,使碳纳米壁在SiO基板100上长大。然后,生长在时间上终止,其比来自Ti的碳纳米壁的生长开始时间长,并且比来自SiO的碳纳米壁的生长更短。 这里,来自SiO的碳纳米壁的生长开始时间比Ti的生长开始时间长。 结果,在SiO基板100上,碳纳米壁不会形成在不形成Ti膜101的情况下暴露的SiO 2的区域中,并且碳纳米壁102仅形成在Ti膜101上。