会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明专利
    • Ceramic composite material and method for manufacturing base substrate for semiconductor layer laminated substrate
    • 陶瓷复合材料及制造半导体层叠基板基板的方法
    • JP2012072011A
    • 2012-04-12
    • JP2010217664
    • 2010-09-28
    • Sumitomo Electric Ind Ltd住友電気工業株式会社
    • YOSHIMURA MASASHINAGASAWA MOTOKIMIZUHARA NAHONAKAHATA SEIJI
    • C04B35/581C04B35/565H01L21/02
    • PROBLEM TO BE SOLVED: To provide a technique related to a base substrate suppressible of occurrence of peeling and crack between itself and a group III nitride semiconductor layer, in a group III nitride semiconductor layer laminated substrate.SOLUTION: There is provided a ceramic composite material used as a base substrate for a group III nitride semiconductor layer laminated substrate. The ceramic composite material is composed of an oxide ceramic and a non-oxide ceramic and has an average linear thermal expansion coefficient at 20-900°C of (5.9±0.2)×10/°C. There is also provided a method for manufacturing the base substrate used in the group III nitride semiconductor layer laminated substrate using the ceramic composite material. The method includes: a raw material mixing step of mixing an oxide ceramic powder and a non-oxide ceramic powder in a predetermined ratio; a compacting step of compacting a mixed powder obtained in the raw material mixing step into a compact of a predetermined shape; and a firing step of firing the compact in an inert atmosphere to manufacture the sintered compact of the ceramic composite material.
    • 要解决的问题:在III族氮化物半导体层层压基板中,提供一种与抑制自身与III族氮化物半导体层之间发生剥离和裂纹的基底的技术。 解决方案:提供了用作III族氮化物半导体层层叠基板的基底的陶瓷复合材料。 陶瓷复合材料由氧化物陶瓷和非氧化物陶瓷组成,并且在(-9.9±0.2)×10 6℃的20-900℃下具有平均线性热膨胀系数, SP> /℃。 还提供了使用陶瓷复合材料制造用于III族氮化物半导体层层合基板的基底基板的制造方法。 该方法包括:以预定比例混合氧化物陶瓷粉末和非氧化物陶瓷粉末的原料混合步骤; 将在所述原料混合工序中得到的混合粉末压实为规定形状的压坯的压实工序; 以及在惰性气氛中烧结压块的烧成工序,制造陶瓷复合材料的烧结体。 版权所有(C)2012,JPO&INPIT
    • 6. 发明专利
    • Nitride film production method
    • 硝酸盐膜生产方法
    • JP2013018687A
    • 2013-01-31
    • JP2011155148
    • 2011-07-13
    • Sumitomo Electric Ind Ltd住友電気工業株式会社
    • MAEDA TORUNAGASAWA MOTOKISOGABE KOICHIKATO TAKESHI
    • C01B21/06C23C24/08H01F41/16
    • PROBLEM TO BE SOLVED: To provide a nitride film production method and apparatus each of which can produce a nitride film such as an α"FeNfilm with good productivity and to provide a nitride film.SOLUTION: In the nitride film production apparatus 1, a raw material powder is aerosolized by an aerosol generation part 10, the aerosol is injected at a high speed into a chamber 100 and is allowed to collide against a substrate B to fragmentize the raw material, and the fragments are deposited on the substrate B to form a film. The production apparatus 1 is further equipped with a plasma generation part 20 that irradiates the aerosol with nitrogen plasma and a superconducting magnet 30 that applies a magnetic field to the formed nitride or the like. The nitrogen plasma makes it possible to efficiently form a nitride such as α"FeNat ordinary temperature, and the applied magnetic field makes it possible both to regulate the penetration direction of N atoms to thereby efficiently form e.g., α"FeNand to orientate the nitride constituting the fragments to thereby deposit a high-orientation nitride film. Accordingly, the production apparatus 1 can produce a nitride film such as an α"FeNfilm with good productivity.
    • 要解决的问题:提供一种氮化物膜的制造方法和装置,其可以制造氮化物膜,例如α“Fe 2 膜,并提供氮化物膜。解决方案:在氮化膜生产设备1中,原料粉末由气溶胶发生部分10雾化,将气溶胶喷射在 高速进入室100并允许与基板B碰撞以破碎原料,并将碎片沉积在基板B上以形成膜,制造装置1还配备有等离子体产生部20,其等于 用氮等离子体照射气溶胶,向形成的氮化物等施加磁场的超导磁体30,能够有效地形成氮化物,例如α“Fe 16” / SB> N 2 ,施加的磁场使其成为可能 以调节N原子的穿透方向,从而有效地形成例如α“Fe 2 并且使 氮化物构成片,从而沉积高取向氮化物膜。 因此,制造装置1能够以良好的生产率制造诸如α“Fe 2 膜的氮化物膜。 P>版权所有(C)2013,JPO&INPIT
    • 9. 发明专利
    • Method for producing iron nitride powder
    • 生产氮化铁粉的方法
    • JP2013016750A
    • 2013-01-24
    • JP2011150472
    • 2011-07-06
    • Sumitomo Electric Ind Ltd住友電気工業株式会社
    • NAGASAWA MOTOKIMAEDA TORU
    • H01F1/06B22F1/00B22F9/22C01B21/06
    • PROBLEM TO BE SOLVED: To provide iron nitride powder mainly comprising iron nitride: α"-FeNexcellent in magnetic characteristics and a production method by which the iron nitride powder can be produced with high productivity.SOLUTION: Iron powder is dissolved in a carboxylic acid solution to prepare a gel while a magnetic field is applied, and the gel is dried to produce an iron complex from the gel. An organic component of the iron complex is removed to produce iron oxide. Further, by performing reduction/nitridation to the iron oxide to produce iron nitride: α"-FeN, iron nitride powder comprising an iron nitride particle can be obtained. Since iron powder of micron order can be utilized for a raw material, deterioration is hardly caused with time, handleability of raw material powder is excellent, and iron nitride can be stably produced with excellent productivity. The obtained iron nitride particle is fine, has a large aspect ratio, and excellent in magnetic characteristics due to shape magnetic anisotropy.
    • 要解决的问题:提供主要包含氮化铁的氮化铁粉末:α“-Fe 2 优良 磁性特性的制造方法和能够以高生产率制造氮化铁粉末的制造方法。解决方案:在施加磁场的同时,将铁粉溶解在羧酸溶液中以制备凝胶,并将凝胶干燥 从凝胶中制造铁络合物,除去铁配合物的有机成分,生成氧化铁,进而,通过对氧化铁进行还原/氮化,生成氮化铁:α“-Fe 16 N 2 ,可以获得包含氮化铁颗粒的氮化铁粉末。 由于可以将原料的微粉末用于微粉,因此几乎不会随时间劣化,原料粉末的处理性优异,能够以优异的生产率稳定地生产氮化铁。 所得到的氮化铁粒子细小,纵横比大,磁性各向异性特性优异。 版权所有(C)2013,JPO&INPIT
    • 10. 发明专利
    • Composite magnetic material and method for manufacturing the same
    • 复合磁性材料及其制造方法
    • JP2012253247A
    • 2012-12-20
    • JP2011125799
    • 2011-06-03
    • Sumitomo Electric Ind Ltd住友電気工業株式会社
    • MAEDA TORUWATANABE ASAKONAGASAWA MOTOKIISHIMINE ASAYUKIKATO TAKESHI
    • H01F41/02B22F1/00B22F3/00B22F3/02B22F3/24C22C33/02C22C38/00H01F1/055H01F1/08
    • PROBLEM TO BE SOLVED: To provide a composite magnetic material which excels in magnetic properties and is suitable as a material for magnets, and to provide a method for manufacturing the same.SOLUTION: Granulated powders made by mixing nano iron powders, multiphase powders containing a hydrogen compound of a rare earth element and an iron-containing material, and a binder are pressure-molded. The pressure molding is carried out while performing exhaust at 0.9 atmospheres or less and a temperature of ±20°C of a decomposition temperature of the binder. Heat treatment (dehydrogenation) of the obtained first molded body is performed under a reduced-pressure atmosphere at a temperature equal to or higher than a recombination temperature to form a recombination alloy containing a rare earth element and Fe from the multiphase powders, and heat treatment (nitriding) of the obtained second molded body is performed under a nitrogen atmosphere at a temperature of 200°C to 450°C to form α''FeNfrom the nano iron powders and a rare earth-iron-nitrogen alloy from the recombination alloy. Both heat treatments are performed by applying a strong magnetic field. A magnetic field is applied in the nitriding treatment to form α''FeN, and orientation directions of easy axes of magnetization in the rare earth-iron-nitrogen alloy and α''FeNare uniformed.
    • 要解决的问题:提供一种磁性能优异且适合作为磁体材料的复合磁性材料,并提供其制造方法。 解决方案:将纳米铁粉末,含有稀土元素的氢化合物的多相粉末和含铁材料和粘合剂混合制成的造粒粉末进行加压成型。 进行压力成型,同时在0.9大气压以下,粘合剂的分解温度为±20℃的温度下进行排气。 所得到的第一成型体的热处理(脱氢)在等于或高于复合温度的减压气氛下进行,以从多相粉末中形成含有稀土元素和Fe的复合合金,并进行热处理 (氮化)在氮气氛下,在200℃〜450℃的温度下进行,形成α“Fe”SB POS =“POST”> 16 < 来自复合合金的纳米铁粉和稀土 - 铁 - 氮合金的“POST”> 2 。 通过施加强磁场来进行两种热处理。 在氮化处理中施加磁场,形成α“Fe 2 ,容易轴的取向方向 稀土 - 铁 - 氮合金中的磁化和α'Fe 2 均匀化。 版权所有(C)2013,JPO&INPIT