会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明专利
    • 炭化鉄材、炭化鉄材の製造方法、及び磁石
    • 铁质材料,其制造方法和磁铁
    • JP2014207341A
    • 2014-10-30
    • JP2013084391
    • 2013-04-12
    • 住友電気工業株式会社Sumitomo Electric Ind Ltd
    • MAEDA TORU
    • H01F1/06B22F1/02B22F9/20H01F1/08H01F41/02
    • 【課題】磁気特性に優れる炭化鉄材、及びその製造方法を提供する。【解決手段】炭化鉄材は、Fe16C2の粒子と、粒子の表面の少なくとも一部に炭素の被覆層とを備える粉末である。炭化鉄材の製造方法は、鉄粉末を準備する準備工程と、炭素粉末を鉄粉末に添加し、鉄粉末と炭素粉末とを混合して、炭素付着鉄粉末を作製する混合工程と、炭素付着鉄粉末に還元ガス雰囲気中で還元熱処理を施して、Feの一部と炭素とを反応させてFe3Cを生成し、Feの残部とFe3Cとを含む前駆体粒子を合成すると共に、前駆体粒子の表面に炭素の被覆層を形成して前駆体粉末を作製する炭化工程と、前駆体粉末に磁場を印加した状態で拡散熱処理を施して、Feの残部とFe3CとからFe16C2の粒子を合成し、Fe16C2粒子の表面に被覆層を備える炭化鉄粉末を作製する拡散工程と、を備える。【選択図】なし
    • 要解决的问题:提供一种磁性能优异的碳化铁材料,以及这种碳化铁材料的制造方法。解决方案:碳化铁材料由粉末组成,包括:FeC粒子和至少一个 每个颗粒表面的一部分。 制造碳化三铁材料的方法包括:制备铁粉的制备步骤; 混合步骤,其包括向铁粉中加入碳粉,并将铁粉和碳粉混合,由此生成附着有碳的铁粉; 碳化步骤,其包括在还原气体气氛中对附着有碳的铁粉进行还原热处理,使一部分铁和碳反应产生FeC,并合成包含剩余铁和FeC的前体颗粒, 并在每个前体颗粒的表面上形成碳涂层,从而制备前体粉末; 以及扩散步骤,其包括对所述前体粉末进行扩散热处理,施加磁场以从剩余的铁和FeC中合成FeC粒子,以制备在每个FeCparticle的表面上具有涂层的碳化铁粉末。
    • 3. 发明专利
    • Magnetic member, and method of producing magnetic member
    • 磁性部件,以及制造磁性部件的方法
    • JP2014146655A
    • 2014-08-14
    • JP2013013366
    • 2013-01-28
    • Sumitomo Electric Ind Ltd住友電気工業株式会社
    • MAEDA TORU
    • H01F1/08H01F1/057H01F41/02
    • PROBLEM TO BE SOLVED: To provide a magnetic member in which the strength is not reduced, filling rate of magnetic powder is high, excellent magnetic characteristics are ensured, and which can produce a magnet of high heatproof temperature, and to provide a method of producing the magnetic material.SOLUTION: A magnetic member includes multiple magnetic particles composed of a rare earth-iron based alloy, and a binder for binding these magnetic particles. The binder includes granular shape retention resin interposed in the gap of the magnetic particles and retaining the shape of the magnetic member, and an impregnation resin impregnating between the magnetic particles and the shape retention resin and maintaining the strength of the magnetic member. The impregnation resin is composed of a thermosetting resin having a Young's modulus of 3 GPa or less after curing. The filling ratio, i.e., the ratio of total volume of the magnetic particles occupying the volume of the magnetic member is 75 vol% or more.
    • 要解决的问题:为了提供强度不降低的磁性部件,磁性粉末的填充率高,磁特性优异,并且可以制造高耐热温度的磁体,并且提供一种制造方法 磁性材料。解决方案:磁性构件包括由稀土 - 铁基合金构成的多个磁性颗粒和用于粘合这些磁性颗粒的粘合剂。 粘合剂包括插入在磁性颗粒的间隙中并保持磁性构件的形状的颗粒形状保持树脂,以及浸渍在磁性颗粒和形状保持树脂之间的浸渍树脂并保持磁性构件的强度。 浸渍树脂由固化后的杨氏模量为3GPa以下的热固性树脂构成。 充填率即占磁体的体积的磁性体的总体积的比例为75体积%以上。
    • 4. 发明专利
    • Method for producing iron nitride powder
    • 生产氮化铁粉的方法
    • JP2013016750A
    • 2013-01-24
    • JP2011150472
    • 2011-07-06
    • Sumitomo Electric Ind Ltd住友電気工業株式会社
    • NAGASAWA MOTOKIMAEDA TORU
    • H01F1/06B22F1/00B22F9/22C01B21/06
    • PROBLEM TO BE SOLVED: To provide iron nitride powder mainly comprising iron nitride: α"-FeNexcellent in magnetic characteristics and a production method by which the iron nitride powder can be produced with high productivity.SOLUTION: Iron powder is dissolved in a carboxylic acid solution to prepare a gel while a magnetic field is applied, and the gel is dried to produce an iron complex from the gel. An organic component of the iron complex is removed to produce iron oxide. Further, by performing reduction/nitridation to the iron oxide to produce iron nitride: α"-FeN, iron nitride powder comprising an iron nitride particle can be obtained. Since iron powder of micron order can be utilized for a raw material, deterioration is hardly caused with time, handleability of raw material powder is excellent, and iron nitride can be stably produced with excellent productivity. The obtained iron nitride particle is fine, has a large aspect ratio, and excellent in magnetic characteristics due to shape magnetic anisotropy.
    • 要解决的问题:提供主要包含氮化铁的氮化铁粉末:α“-Fe 2 优良 磁性特性的制造方法和能够以高生产率制造氮化铁粉末的制造方法。解决方案:在施加磁场的同时,将铁粉溶解在羧酸溶液中以制备凝胶,并将凝胶干燥 从凝胶中制造铁络合物,除去铁配合物的有机成分,生成氧化铁,进而,通过对氧化铁进行还原/氮化,生成氮化铁:α“-Fe 16 N 2 ,可以获得包含氮化铁颗粒的氮化铁粉末。 由于可以将原料的微粉末用于微粉,因此几乎不会随时间劣化,原料粉末的处理性优异,能够以优异的生产率稳定地生产氮化铁。 所得到的氮化铁粒子细小,纵横比大,磁性各向异性特性优异。 版权所有(C)2013,JPO&INPIT
    • 5. 发明专利
    • Composite magnetic material and method for manufacturing the same
    • 复合磁性材料及其制造方法
    • JP2012253247A
    • 2012-12-20
    • JP2011125799
    • 2011-06-03
    • Sumitomo Electric Ind Ltd住友電気工業株式会社
    • MAEDA TORUWATANABE ASAKONAGASAWA MOTOKIISHIMINE ASAYUKIKATO TAKESHI
    • H01F41/02B22F1/00B22F3/00B22F3/02B22F3/24C22C33/02C22C38/00H01F1/055H01F1/08
    • PROBLEM TO BE SOLVED: To provide a composite magnetic material which excels in magnetic properties and is suitable as a material for magnets, and to provide a method for manufacturing the same.SOLUTION: Granulated powders made by mixing nano iron powders, multiphase powders containing a hydrogen compound of a rare earth element and an iron-containing material, and a binder are pressure-molded. The pressure molding is carried out while performing exhaust at 0.9 atmospheres or less and a temperature of ±20°C of a decomposition temperature of the binder. Heat treatment (dehydrogenation) of the obtained first molded body is performed under a reduced-pressure atmosphere at a temperature equal to or higher than a recombination temperature to form a recombination alloy containing a rare earth element and Fe from the multiphase powders, and heat treatment (nitriding) of the obtained second molded body is performed under a nitrogen atmosphere at a temperature of 200°C to 450°C to form α''FeNfrom the nano iron powders and a rare earth-iron-nitrogen alloy from the recombination alloy. Both heat treatments are performed by applying a strong magnetic field. A magnetic field is applied in the nitriding treatment to form α''FeN, and orientation directions of easy axes of magnetization in the rare earth-iron-nitrogen alloy and α''FeNare uniformed.
    • 要解决的问题:提供一种磁性能优异且适合作为磁体材料的复合磁性材料,并提供其制造方法。 解决方案:将纳米铁粉末,含有稀土元素的氢化合物的多相粉末和含铁材料和粘合剂混合制成的造粒粉末进行加压成型。 进行压力成型,同时在0.9大气压以下,粘合剂的分解温度为±20℃的温度下进行排气。 所得到的第一成型体的热处理(脱氢)在等于或高于复合温度的减压气氛下进行,以从多相粉末中形成含有稀土元素和Fe的复合合金,并进行热处理 (氮化)在氮气氛下,在200℃〜450℃的温度下进行,形成α“Fe”SB POS =“POST”> 16 < 来自复合合金的纳米铁粉和稀土 - 铁 - 氮合金的“POST”> 2 。 通过施加强磁场来进行两种热处理。 在氮化处理中施加磁场,形成α“Fe 2 ,容易轴的取向方向 稀土 - 铁 - 氮合金中的磁化和α'Fe 2 均匀化。 版权所有(C)2013,JPO&INPIT
    • 6. 发明专利
    • Method for manufacturing iron nitride material, and iron nitride material
    • 氮化铁材料的制造方法和氮化钛材料
    • JP2012246174A
    • 2012-12-13
    • JP2011118594
    • 2011-05-27
    • Sumitomo Electric Ind Ltd住友電気工業株式会社
    • MAEDA TORUNAGASAWA MOTOKIKATO TAKESHI
    • C01B21/06C22C38/00H01F1/032
    • PROBLEM TO BE SOLVED: To provide a method for manufacturing an iron nitride material, by which an iron nitride material having a high content of an α"FeNphase can be obtained, and to provide such an iron nitride material.SOLUTION: The manufacturing method includes a step of generating an α"FeNphase by heating an Fe-containing base material such as pure iron, an iron alloy or an iron compound in a nitrogen element-containing gas atmosphere such as a nitrogen atmosphere, while applying a magnetic field to the base material. The applied magnetic field H is a strong magnetic field with H≥(7/3)+2×Nf, wherein Nf (Nf=0-1) is a demagnetization coefficient prescribed from the shape of the base material. Since the strong magnetic field with H≥(7/3)+2×Nf is applied to the base material, the primitive lattice of Fe elongates in the applied magnetic field direction (one direction) and the intrusion position of N is easily restricted to this one direction. Therefore, excess nitrogen is controlled, the α"FeNphase excellent in magnetic properties is easily generated, and the objective iron nitride material having a high content of the α"FeNphase can be manufactured.
    • 要解决的问题:提供一种制造氮化铁材料的方法,通过该方法,具有高含量α“Fe 16S 2 相,并提供这种氮化铁材料。解决方案:制造方法包括产生α“Fe 通过在含氮元素的气体气氛中加热诸如纯铁,铁合金或铁化合物的含Fe基体材料,例如,通过加热含铁基体材料,例如16 N 2 < 氮气氛,同时向基材施加磁场。 所施加的磁场H是具有H≥(7/3)+ 2×Nf的强磁场,其中Nf(Nf = 0-1)是从基材的形状规定的退磁系数。 由于将H≥(7/3)+ 2×Nf的强磁场施加到基材上,所以Fe的原始晶格在施加的磁场方向(一个方向)上伸长,N的入侵位置容易地被限制在 这一个方向。 因此,控制过量的氮,容易产生磁特性优异的α“Fe 16 相, 可以制造具有高含量的α“Fe 2 N 2 相的氮化铁材料。 版权所有(C)2013,JPO&INPIT
    • 7. 发明专利
    • Reactor
    • 反应堆
    • JP2012094924A
    • 2012-05-17
    • JP2012031290
    • 2012-02-16
    • Sumitomo Electric Ind Ltd住友電気工業株式会社
    • YAMAMOTO SHINICHIROKAWAGUCHI HAJIMEMAEDA TORUISHIMINE ASAYUKI
    • H01F27/24H01F27/255H01F37/00
    • PROBLEM TO BE SOLVED: To provide a reactor using a spacer capable of reducing loss and mitigating uneven distribution of magnetic flux density to improve energy conversion efficiency by reducing a leakage flux generated at a gap peripheral part.SOLUTION: A reactor includes nearly U-shaped core blocks 5 and a pair of I-shaped parts 4 configured by combining two or more rectangular core blocks 4a, 4b, and 4c. An annular core 2 is formed by connecting the above-mentioned nearly U-shaped core blocks to both ends of the pair of I-shaped parts. A coil 3 is provided at the outer periphery of the annular core. A spacer 7 configured by dispersing a powdery magnetic material 9 into a base material made of a nonmagnetic material is interposed between at least the above I-shaped parts and nearly U-shaped core blocks.
    • 要解决的问题:提供一种使用能够减少损耗并减轻磁通密度不均匀分布的间隔物的反应器,通过减少在间隙周边部分产生的漏磁通来提高能量转换效率。 解决方案:反应器包括通过组合两个或更多个矩形芯块4a,4b和4c而构成的大致U形的芯块5和一对I形部分4。 通过将上述几乎U形的芯块连接到一对I形部件的两端而形成环形芯2。 线圈3设置在环形芯的外周。 通过将粉状磁性材料9分散在由非磁性材料制成的基材中构成的间隔件7插入在至少上述I形部件和近似U形的芯部块之间。 版权所有(C)2012,JPO&INPIT
    • 8. 发明专利
    • Powder for magnet
    • 磁粉粉
    • JP2011236498A
    • 2011-11-24
    • JP2011036281
    • 2011-02-22
    • Sumitomo Electric Ind LtdSumitomo Electric Sintered Alloy Ltd住友電工焼結合金株式会社住友電気工業株式会社
    • MAEDA TORUWATANABE ASAKO
    • B22F1/00B22F1/02B22F3/00C22C38/00H01F1/053H01F1/06H01F1/08H01F41/02
    • H01F1/0551B22F3/02B22F3/101B22F3/24B22F9/023C22C33/0278H01F1/0573H01F1/0578H01F41/0273Y10T428/2982
    • PROBLEM TO BE SOLVED: To provide a powder for magnets, which give a rare-earth magnet having excellent magnetic properties and which has excellent compactibility, a process for producing the powder, a powder compact, and a rare-earth/iron/boron alloy material.SOLUTION: The powder for magnets is configured of magnetic particles 1 having a structure where grains of a phase 3 constituted of the hydride of a rare-earth element are dispersedly present in a phase 2 constituted of an iron-containing substance. The phase 2 constituted of an iron-containing substance is evenly present in each magnetic particle 1. This powder hence has excellent compactibility, and density of a powder compact 4 can be easily heightened. The powder for magnets is obtained by subjecting a powder of a rare-earth iron/boron alloy (R-Fe-B alloy) to heat treatment in a hydrogen atmosphere at a temperature not lower than the disproportionation temperature of the R-Fe-B alloy to thereby separate the rare-earth element and an iron-containing substance and yield the hydride of the rare-earth element. This powder for magnets is compacted to obtain a powder compact 4. The powder compact 4 is heat-treated under vacuum to obtain an R-Fe-B alloy material 5. The R-Fe-B alloy material 5 is magnetized to obtain an R-Fe-B alloy magnet 6.
    • 要解决的问题:提供一种磁体粉末,其给出具有优异磁性能并且具有优异的紧密性的稀土磁体,制造粉末的方法,粉末压块和稀土/铁 /硼合金材料。 解决方案:用于磁体的粉末由具有由稀土元素的氢化物构成的相3的晶粒分散存在于由含铁物质构成的相2中的结构的磁性粒子1构成。 由铁含量物质组成的相2均匀地存在于每个磁性粒子1中。因此,该粉末具有优异的紧密性,并且可以容易地提高粉末成形体4的密度。 用于磁体的粉末是通过在不低于R-Fe-B的歧化温度的温度下在氢气氛中对稀土类铁/硼合金(R-Fe-B合金)的粉末进行热处理而获得的 合金,从而分离稀土元素和含铁物质,并产生稀土元素的氢化物。 将这种用于磁体的粉末压实以获得粉末压块4.粉末压实体4在真空下进行热处理以获得R-Fe-B合金材料5.将R-Fe-B合金材料5磁化以获得R -Fe-B合金磁铁6.版权所有(C)2012,JPO&INPIT
    • 10. 发明专利
    • Core for reactor, its production process, and reactor
    • 核反应堆,其生产过程和反应堆
    • JP2009070885A
    • 2009-04-02
    • JP2007235138
    • 2007-09-11
    • Sumitomo Electric Ind Ltd住友電気工業株式会社
    • KUSABETSU KAZUTSUGUMAEDA TORUISHIMINE ASAYUKI
    • H01F37/00B22F1/00B22F1/02B22F3/00C22C38/00H01F1/14H01F1/24H01F27/255
    • PROBLEM TO BE SOLVED: To provide a reactor core enabling an improvement in DC superposition characteristics, a manufacturing method for the reactor core, and a reactor.
      SOLUTION: The reactor core M is made by pressing metal magnetic particles covered with an insulating film. The metal magnetic particles have the following configuration. (1) An average particle diameter is equal to or more than 1 μm and equal to or less than 70 μm. (2) A coefficient of variation Cv (σ/μ) representing the ratio between a particle diameter standard deviation (σ) and the average particle diameter (μ) is equal to or less than 0.40. (3) Circularity is equal to or more than 0.8 and equal to or less than 1.0. The circularity represents the average of values determined by the equation: circularity=4π×area of metal magnetic particle/square of outer circumference length of metal magnetic particle, where the area and the outer circumference length of each metal magnetic particle are the values that are calculated after observing the sections of randomly extracted 1,000 or more of metal magnetic particles by a microscope.
      COPYRIGHT: (C)2009,JPO&INPIT
    • 要解决的问题:提供能够改善DC叠加特性的反应堆堆芯,反应堆芯的制造方法和反应器。 解决方案:反应堆芯M通过压制覆盖有绝缘膜的金属磁性颗粒制成。 金属磁性颗粒具有以下构造。 (1)平均粒径等于或大于1μm且等于或小于70μm。 (2)表示粒径标准偏差(σ)与平均粒径(μ)之比的变异系数Cv(σ/μ)为0.40以下。 (3)圆度等于或大于0.8且等于或小于1.0。 圆形度表示由以下等式确定的值的平均值:圆形度=4π×金属磁性颗粒的面积/金属磁性颗粒的外周长度的平方,其中各金属磁性颗粒的面积和外周长度为 通过显微镜观察随机提取的1,000个或更多个金属磁性颗粒的切片之后的计算。 版权所有(C)2009,JPO&INPIT