会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明公开
    • METHOD, APPARATUS AND COMPUTER PROGRAM PRODUCT FOR CLASSIFICATION OF OBJECTS
    • VERFAHREN,VORRICHTUNG UND COMPUTERPROGRAMMPRODUKT ZUR KLASSIFIZIERUNG VON OBJEKTEN
    • EP2786311A1
    • 2014-10-08
    • EP12854032.5
    • 2012-10-25
    • Nokia Corporation
    • GOVINDARAO, Krishna AnnasagarPUTRAYA, Gururaj Gopal
    • G06K9/00G06K9/62
    • G06F17/30707G06F17/3002G06K9/00295G06K9/6215G06K9/6232G06K9/627G06K9/6274
    • In accordance with various example embodiments, methods, apparatuses, and computer program products are provided. A method comprises accessing a gallery comprising a plurality of classes, determining distances between classes of the plurality of classes, and determining thresholds for one or more classes of the gallery for classifying test objects in the classes, wherein threshold for a class is determined based on at least one distance of the class from at least one remaining class of the plurality of classes. The apparatus comprises at least one processor and at least one memory, configured to, cause the apparatus to perform accessing a gallery comprising a plurality of classes, determining distances between classes of the plurality of classes, and determining thresholds for classes of the gallery for classifying test objects in the classes, wherein threshold for a class is determined based on distances of the class from remaining classes of the gallery.
    • 根据各种示例性实施例,提供了方法,装置和计算机程序产品。 一种方法包括访问包括多个类别的画廊,确定所述多个类别的类别之间的距离,以及确定所述画廊的一个或多个类别的门槛,以对所述类别中的测试对象进行分类,其中类别的阈值基于 所述类别与所述多个类别中的至少一个剩余类别的至少一个距离。 该装置包括至少一个处理器和至少一个存储器,其被配置为使得该装置执行访问包括多个类别的库,确定多个类别的类别之间的距离,以及确定用于分类的库的类别的阈值 在类中测试对象,其中类的阈值基于类与图库的剩余类的距离来确定。
    • 6. 发明公开
    • Method and apparatus for input classification using a neural network
    • 为输入进行分类以神经网络的方法和装置。
    • EP0574937A2
    • 1993-12-22
    • EP93109763.8
    • 1993-06-18
    • UNITED PARCEL SERVICE OF AMERICA, INC.
    • Moed,Michael C.Lee,Chih-Ping
    • G06K9/66
    • G06K9/6274G06K9/6223G06K9/6272G06K9/6273
    • The invention calculates a distance measure from the feature vector to the center of each neuron of a plurality of neurons, where each neuron is associated with one of the possible outputs. The invention then selects each neuron that encompasses the feature vector in accordance with the distance measure. The invention then determines a vote for each possible output, where the vote is the number of selected neurons that are associated with each possible output. If the vote for one of the possible outputs is greater than all other votes for all other possible outputs, then the invention selects that possible output as corresponding to the input. Otherwise, if the vote for one of the possible outputs is not greater than all other votes for all other possible outputs, then the invention identifies the neuron that has the smallest distance measure of all other neurons. If that smallest distance measure is less than a specified value, then the invention selects the possible output associated with that identified neuron as corresponding to the input.
    • 本发明是一种用于输入分类成可能的输出的多个一个的分类方法和装置。 本发明基因费率特征矢量代表输入的。 本发明然后计算从特征向量到神经元的复数,其中,每个神经元与可能输出的一个相关联的每个神经元的中心的距离度量。 然后,本发明选择每个神经元没有涵盖具有距离度量在雅舞蹈的特征向量。 本发明然后bestimmt表决对每个可能的输出,其中所述票是所选神经元的数量并与每个可能的输出相关联。 如果可能的输出中的一个的投票是比所有其他票对于所有其它可能的输出值,则选择所述没有本发明可能的输出作为对应于输入。 否则,如果可能的输出中的一个投票并不比其他所有选票其他所有可能的输出值,则该发明鉴别神经元做了所有其他神经元的最小距离度量。 如果做了最小距离度量小于指定值时,则本发明选择与神经元相关联的可能的输出并识别为对应于该输入。 因此,本发明是用于产生一个神经元锻炼方法和装置。 本发明选择的锻炼的输入,其中,每个锻炼输入对应于第一种可能的输出多个。 然后,本发明表征每个输入锻炼的质量。 然后,本发明从锻炼特征的输入的锻炼输入所做选择比其它输入锻炼中的至少一个具有更高的质量。 然后,本发明在创建雅舞蹈与所选择的输入特征的锻炼神经元。 因此,本发明是一种用于输入分类成可能的输出的多个一个的分类方法。 本发明的输入分类到簇代表两种或更多种可能的输出的一个。 的本发明然后分类输入到由集群代表的两个或更多个可能输出之一。 至少本发明的分类步骤中的一个是由表示输入的信息进行比较来神经元特征的。 因此,本发明是一种用于调节神经元包含特征矢量的多个方法和装置。 本发明表征了特征矢量的空间分布。 与雅舞发明进行空间bestimmt神经元做了表征。
    • 7. 发明公开
    • RECOGNITION OF A 3D MODELED OBJECT FROM A 2D IMAGE
    • 从2D图像识别3D模型对象
    • EP3179407A1
    • 2017-06-14
    • EP15306952.1
    • 2015-12-07
    • Dassault Systèmes
    • BOULKENAFED, MalikaMICHEL, FabriceREJEB SFAR, Asma
    • G06K9/00
    • G06K9/6269G06F17/50G06K9/00208G06K9/4628G06K9/6215G06K9/6274G06N3/04G06N3/0454G06N3/08
    • The invention notably relates to a computer-implemented method for recognizing a three-dimensional modeled object from a two-dimensional image. The method comprises providing a first set of two-dimensional images rendered from three-dimensional modeled objects, each two-dimensional image of the first set being associated to a label; providing a second set of two-dimensional images not rendered from three-dimensional objects, each two-dimensional image of the second set being associated to a label; training a model on both first and second sets; providing a similarity metric; submitting a two-dimensional image depicting at least one object; and retrieving a three-dimensional object similar to the said at least one object of the two-dimensional image submitted by using the trained model and the similarity metric.
    • 本发明特别涉及用于从二维图像识别三维建模对象的计算机实现的方法。 该方法包括提供从三维建模对象渲染的第一组二维图像,第一组的每个二维图像与标签关联; 提供未从三维对象渲染的第二组二维图像,第二组的每个二维图像与标签相关联; 在第一组和第二组上训练模型; 提供相似性度量; 提交描绘至少一个对象的二维图像; 以及检索与使用训练模型和相似性度量提交的二维图像的所述至少一个对象相似的三维对象。
    • 10. 发明公开
    • Training method and apparatus for adjusting a neuron
    • 培训课程和教学课程Einstellung eines神经元
    • EP1197913A1
    • 2002-04-17
    • EP01125304.4
    • 1993-06-18
    • UNITED PARCEL SERVICE OF AMERICA, INC.
    • Moed, Michael C.Lee, Chih-Ping
    • G06K9/66
    • G06K9/6274G06K9/6223G06K9/6273G06N3/082
    • A training method for adjusting a neuron comprises the steps of (a) generating a feature vector representative of a training input, wherein said training input corresponds to one of a plurality of possible outputs; and (b) if said neuron encompasses said feature vector and said neuron does not correspond to said training input then spatially adjusting said neuron, wherein said adjusted neuron comprises a boundary defined by two or more adjusted neuron axes of different length, wherein said neuron is in a feature space comprising an existing feature vector, wherein said neuron comprises a boundary defined by two or more neuron axes, and wherein step (b) further comprises the steps of (i) selecting at least one of said neuron axes; (ii) calculating the distances along each of said selected neuron axes from the center of said neuron to said existing feature vector; and (iii) reducing said selected neuron axes by amounts proportional to said distances and the lengths of said selected neuron axes to create said adjusted neuron.
    • 用于调整神经元的训练方法包括以下步骤:(a)生成表示训练输入的特征向量,其中所述训练输入对应于多个可能输出中的一个; 和(b)如果所述神经元包含所述特征向量,并且所述神经元不对应于所述训练输入,则在空间上调整所述神经元,其中所述经调整的神经元包括由两个或更多个不同长度的经调整的神经元轴定义的边界,其中所述神经元是 在包括现有特征向量的特征空间中,其中所述神经元包括由两个或更多个神经元轴定义的边界,并且其中步骤(b)还包括以下步骤:(i)选择所述神经元轴中的至少一个; (ii)计算从所述神经元的中心到所述现有特征向量的每个所述选择的神经元轴的距离; 以及(iii)将所选择的神经元轴减少与所述距离和所选择的神经元轴的长度成比例的量,以产生所述经调整的神经元。