会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明公开
    • ENERGY BEAM SIZE VERIFICATION
    • 能量束尺寸验证
    • EP3183082A1
    • 2017-06-28
    • EP15750294.9
    • 2015-07-30
    • ARCAM AB
    • SNIS, Anders
    • B22F3/105B23K26/03B23K26/06B23K26/34B23K26/70G02B7/10B23K15/00
    • B23K26/032B23K15/0033B23K26/046B23K26/0648B23K26/34B23K26/70B23K26/702G02B7/10
    • A method for verifying a size of an energy beam spot, said method comprising the steps of providing a first beam spot having a predetermined size and power at a first position on a work piece, varying a focus and/or astigmatism lens setting for said first beam spot until max intensity for the beam spot is detected, comparing the detected settings of said focus lens and/or astigmatism lens for said maximum intensity of the beam spot with stored settings of said focus lens and/or astigmatism lens for the beam spot with said predetermined size and power, repeating step a-c for different predetermined beam powers, repeating step a-d for different positions on said work piece, wherein said beam spot size is verified if each detected settings of said focus lens and/or astigmatism lens are deviating less than a predetermined value from corresponding stored settings of said focus lens and/or astigmatism lens.
    • 一种用于验证能量束点大小的方法,所述方法包括以下步骤:在工件上的第一位置处提供具有预定尺寸和功率的第一束点,改变用于所述第一点的焦点和/或散光透镜设置 检测束斑的最大强度直到检测到束斑的最大强度,将用于束斑的所述最大强度的所述聚焦透镜和/或散光透镜的检测设置与束斑的所述聚焦透镜和/或散光透镜的存储设置进行比较 所述预定尺寸和功率,针对不同的预定光束功率重复步骤ac,针对所述工件上的不同位置重复步骤ad,其中如果所述聚焦透镜和/或散光透镜的每个检测设置偏离小于 来自所述聚焦透镜和/或散光透镜的相应存储设置的预定值。
    • 7. 发明公开
    • Verfahren zum stirnseitigen Schweissen von Blechen
    • 维吾尔族革兰德冯·勃莱森(Schweissen von Blechen)
    • EP1872894A2
    • 2008-01-02
    • EP07009103.8
    • 2007-05-05
    • Volkswagen Aktiengesellschaft
    • Rudolf, HeikoTessmar, VolkerJüttner, SvenGrosser, Bernd
    • B23K26/32B23K26/42B23K33/00B23K9/167B23K9/173B23K9/23B23K9/235B23K15/00B23K103/04B23K101/00B23K101/18
    • B23K33/004B23K9/167B23K9/173B23K9/23B23K9/235B23K15/0033B23K15/0093B23K26/32B23K26/60B23K2201/006B23K2201/185B23K2203/04B23K2203/50
    • Die Erfindung betrifft ein Verfahren zum stirnseitigen Schweißen von zumindest zwei abschnittsweise aufeinander angeordneten Blechen (2, 3, 4). Hierbei werden die Schweißparameter derart gewählt, dass in den zu verbindenden Blechen (2, 3, 4), wobei mindestens eines der Bleche (2, 3, 4) aus einem hochfesten Stahl besteht, zumindest in unmittelbarer Nachbarschaft einer stirnseitigen Schweißnaht (7) eine Temperatur eingestellt wird, durch welche der hochfeste Stahl des zumindest einen Bleches (2, 3, 4) angelassen wird. Zusätzlich wird durch die geeignete Wahl der Schweißparameter an einer Stirnseite (6) der zu verbindenden Bleche (2, 3, 4) ein die Schweißnaht (7) bildendes Schweißbadvolumen (11) erzeugt wird, welches eine Breite (b1) aufweist, die größer ist als die Breite (b2) der Stirnseite (6) der zu verbindenden Bleche (2, 3, 4). Hierdurch kann zwischen den Außenseiten (12, 13) der Bleche (2, 3, 4) und der Schweißnaht (7) ein Hinterschnitt (14) und dadurch eine formschlüssige Verbindung zwischen den Blechen (2, 3, 4) und der Schweißnaht (7) erzeugt werden.
    • 为了生产车门和襟翼而彼此分开布置的两个金属板(2,3,4)的前侧焊接的步骤包括退火连接的金属板中包含的高电阻钢,用于产生焊池容积成形 通过调整在前侧焊缝附近的温度,在金属板的前侧(6)上形成焊缝(7)。 焊池体积的宽度大于金属板的前侧的宽度。 为了生产车门和襟翼而彼此分开布置的两个金属板(2,3,4)的前侧焊接的步骤包括退火连接的金属板中包含的高电阻钢,用于产生焊池容积成形 通过调整在前侧焊缝附近的温度,在金属板的前侧(6)上形成焊缝(7)。 焊池体积的宽度大于金属板的前侧的宽度。 在金属板的外侧(12,13)和焊缝之间产生底切。 前侧焊缝通过金属保护气体焊接或钨极惰性气体焊接生产。 通过焊接速度和/或光束输出的可变调节,在金属板的前侧产生退火所需的温度和金属板中的热影响区域的形成和/或足够的大的熔池体积。 在焊接过程中会提供一个额外的材料。 通过改变送丝速度产生足够大的熔池体积。 焊接期间的金属板通过针对金属板的外侧的接触压力在接合位置的区域中进行处理,以将金属板定位在组装位置。 产生接触按压力的接触压制装置和焊接装置(9)共同地沿进给方向移动。
    • 10. 发明公开
    • QUALITY CONTROL METHOD FOR REGULATING THE OPERATION OF AN ELECTROMECHANICAL APPARATUS, FOR EXAMPLE AN EBM APPARATUS, IN ORDER TO OBTAIN CERTIFIED PROCESSED PRODUCTS
    • 用于调节机电设备的操作的质量控制方法,例如EBM设备,以获得经认证的加工产品
    • EP3268153A1
    • 2018-01-17
    • EP16715463.2
    • 2016-03-14
    • Limacorporate S.p.A.
    • PRESSACCO, MicheleREGIS, Marco
    • B22F3/105
    • G05B19/41875B22F3/1055B22F2003/1057B23K15/0013B23K15/002B23K15/0033B23K15/0086B23K15/02B33Y50/02G05B2219/32368G05B2219/49018H01J37/304H01J37/305H01J2237/30433H01J2237/3128Y02P10/295
    • The invention relates to a method for regulating the operation of an electromechanical apparatus (1), for example an EBM apparatus, in order to obtain certified processed products, wherein it is provided an initial calibration step that is intended to check the proper functioning of all the component parts of the apparatus (1) structured to ensure the complete functionality and a subsequent quality control step carried out on the obtained products by the carried out working process. The method entails the following steps: —defining a plurality of measurement parameters relating to the component parts of the apparatus; —measuring at least some of said parameters by means of sensors and/or measurement indicators related to said parameters during at least one processing phase performed by the apparatus; —performing a quality control step on the obtained products after the working process obtaining data on any deviation from the expected quality; —comparing the detected measurements of said parameters and data on any deviation from the expected quality with corresponding values of reference parameters available for that specific apparatus and for those products; —detecting any deviations in one or more of said parameters or said data with respect to the values of the reference parameters; —computing, on the basis of such differences, a total correction and regulation value; —applying said total correction and regulation value preferably to only one of said parameters prior to the subsequent process, for example to the generation energy of the electrons beam (3). Basically, the method of the present invention allows obtaining semi-finished products free from structural defects by means of a primary check of the correct functioning of the various component parts of the apparatus (calibration procedure), a secondary check of the operational effectiveness of the process itself (operational qualification procedure) and a further final check of the process stability and repeatability within a process window (performance qualification).