会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明公开
    • Use of modulated inductive power and bias power to reduce overhang and improve bottom coverage
    • 调制感应功率和偏置功率中的应用,以减少过剩,提高地板涂料
    • EP1094493A3
    • 2003-10-15
    • EP00309180.8
    • 2000-10-18
    • Applied Materials, Inc.
    • Forster, John C.Gopalraja, Praburam
    • H01J37/32H01J37/34
    • C23C14/345C23C14/046C23C14/358H01J37/321H01J37/32146H01J37/3405H01L21/2855H01L21/76843H01L21/76873
    • The present invention provides a method and apparatus for achieving conformal step coverage of one or more materials on a substrate (110) using sputtered ionized material. A plasma is struck and maintained in a processing region by coupling energy into one or more gases. A target (104) disposed in the processing region provides a source of material to be sputtered and then ionized in the plasma environment. During deposition of material onto the substrate, the plasma density is modulated by varying the energy supplied to the plasma. During a period of plasma decay, a bias to a substrate support member (112) is increased to a relatively higher power to periodically enhance the attraction of positively charged particles to the substrate during the afterglow period of the plasma. In one embodiment, a bias to the target is also modulated.
    • 本发明提供了关于使用溅射离子化材料中的基片(110)实现的一种或多种材料的保形的台阶覆盖的方法和装置。 等离子体通过将能量耦合到一个或多个气体击中并保持在处理区域。 在处理区域中设置在目标(104)提供材料的来源将被溅射并然后在等离子体环境中离子化。 在材料的沉积到基底上,等离子体密度是通过改变提供给等离子体的能量进行调制。 的期间,等离子体衰变的,偏压到支撑构件的基板(112)被增加到一个相对较高的功率以周期性地提高在等离子体的余辉期间带正电的颗粒与基材的吸引力。 在一个实施方案中,这样的偏置到目标被调制。
    • 3. 发明公开
    • Active shield for generating a plasma for sputtering
    • 用于产生溅射等离子体的有源屏蔽
    • EP0836219A2
    • 1998-04-15
    • EP97307875.1
    • 1997-10-06
    • APPLIED MATERIALS, INC.
    • Yao, GongdaHofmann, RalfTepman, AviGopalraja, Praburam
    • H01J37/34H01J37/32
    • H01J37/321H01J37/34H01J37/3441H01J2237/3327
    • A plasma chamber (100) in a semiconductor fabrication system eliminates the need for magnetron sputtering.
      Referring first to Figs. 1-2, a plasma generator in accordance with an embodiment of the present invention comprises a substantially cylindrical plasma chamber (100) which is received in a vacuum (102) (Fig.2). The plasma chamber (100) of this embodiment has a single turn helical coil (104) which is carried internally of the vacuum chamber walls (108) (Fig.2) by a chamber shield (106). The chamber shield (106) protects the interior walls (108) (Fig.2) of the vacuum chamber (102) from the material being deposited within the interior of the plasma chamber (100).
      Radio frequency (RF) energy from an RF generator (404) is radiated from the coil (104) into the interior of the plasma chamber (100), which energizes a plasma within the plasma chamber (100). An ion flux strikes a negatively biased, magnetron-free target (110) positioned above the plasma chamber (100). No magnetron magnets are disposed above the magnetron-free target (110). The plasma ions eject material from the magnetron-free target (110) onto a substrate (112) which may be a wafer or other workpiece supported by a pedestal (114) at the bottom of the plasma chamber. It has been found that high density plasmas produce sufficient ionization to provide for a high deposition rate of target material onto a substrate, which allows for the elimination of magnetron magnetic fields and the attendant magnetron magnets. By eliminating the magnetron, the uniformity of the deposition of target material onto a workpiece can also be improved. In addition, the sidewall coverage of trench-like structures and contact holes and the like can also be increased. Furthermore, the rate of the deposition of target material onto a workpiece can be the same or better than that obtainable using magnetron sputtering.
    • 半导体制造系统中的等离子体室(100)消除了对磁控溅射的需要。 首先参考图1和2。 如图1-2所示,根据本发明实施例的等离子体发生器包括容纳在真空(102)(图2)中的基本上圆柱形的等离子体室(100)。 该实施例的等离子体腔室(100)具有由腔室罩(106)承载在真空腔壁(108)(图2)内部的单匝螺旋线圈(104)。 室屏蔽件(106)保护真空室(102)的内壁(108)(图2)免于沉积在等离子体室(100)内部的材料。 来自RF发生器(404)的射频(RF)能量从线圈(104)辐射到等离子体室(100)的内部,其激发等离子体室(100)内的等离子体。 离子通量撞击位于等离子体腔室(100)上方的负偏压无磁控靶(110)。 没有磁控管磁体设置在无磁控靶(110)上方。 等离子体离子将材料从无磁控靶(110)喷射到衬底(112)上,该衬底可以是等离子体室底部由基座(114)支撑的晶片或其他工件。 已经发现,高密度等离子体产生足够的电离以提供靶材料在衬底上的高沉积速率,这允许消除磁控管磁场和附带的磁控管磁体。 通过消除磁控管,靶材料在工件上沉积的均匀性也可以得到改善。 另外,沟槽状结构和接触孔等的侧壁覆盖率也可以增加。 此外,目标材料在工件上的沉积速率可以与使用磁控溅射获得的速率相同或更好。
    • 5. 发明公开
    • Apparatus and method for depositing material on a substrate
    • Vorrichtung und Verfahren zum Abscheidung eines Werkstoffs auf ein Substrat
    • EP1103631A2
    • 2001-05-30
    • EP00310335.5
    • 2000-11-21
    • Applied Materials, Inc.
    • Gopalraja, PraburamEdelstein, SergioTepman, AviDing, PeijunGhosh, DebabrataMaity, Nimalya
    • C23C14/35H01J37/34
    • C23C14/345C23C14/046C23C14/358H01J37/321H01J37/3408
    • The disclosure relates to a method and apparatus for achieving conformal step coverage on a substrate by PVD. A target (104) provides a source of material to be sputtering by a plasma and then ionized. Ionization is facilitated by maintaining a sufficiently dense plasma using, for example, an inductive coil (122). The ionized material is then deposited on the substrate (110) which is biased to a negative voltage by support member (112). A signal (200) provided to the target during processing includes a negative voltage portion (202) and a zero-voltage portion (204). During the negative voltage portion, ions are attracted to the target to cause sputtering. During the zero-voltage portion, sputtering from the target is terminated while the bias on the substrate cause reverse sputtering therefrom. Accordingly, the negative voltage portion (202) and the zero-voltage portion (204) are alternated to cycle between a sputter step and a reverse sputter step. The film quality and uniformity can be controlled by adjusting the frequency of the signal, the chamber pressure, the power supplied to each of the support member and other process parameters.
    • 本公开涉及一种通过PVD在衬底上实现适形步骤覆盖的方法和装置。 靶(104)提供通过等离子体进行溅射的材料源,然后电离。 通过使用例如感应线圈(122)保持足够密集的等离子体来促进离子化。 然后将电离材料沉积在衬底(110)上,衬底(110)被支撑构件(112)偏压到负电压。 在处理期间提供给目标的信号(200)包括负电压部分(202)和零电压部分(204)。 在负电压部分期间,离子被吸引到靶上以引起溅射。 在零电压部分期间,终止来自靶的溅射,同时衬底上的偏压引起反溅射。 因此,负电压部分(202)和零电压部分(204)交替地在溅射步骤和反向溅射步骤之间循环。 可以通过调节信号的频率,室压力,提供给每个支撑构件的功率和其他工艺参数来控制膜的质量和均匀性。
    • 7. 发明公开
    • Active shield for generating a plasma for sputtering
    • EP0836219A3
    • 1998-09-16
    • EP97307875.1
    • 1997-10-06
    • APPLIED MATERIALS, INC.
    • Yao, GongdaHofmann, RalfTepman, AviGopalraja, Praburam
    • H01J37/34H01J37/32
    • H01J37/321H01J37/34H01J37/3441H01J2237/3327
    • A plasma chamber (100) in a semiconductor fabrication system eliminates the need for magnetron sputtering. Referring first to Figs. 1-2, a plasma generator in accordance with an embodiment of the present invention comprises a substantially cylindrical plasma chamber (100) which is received in a vacuum (102) (Fig.2). The plasma chamber (100) of this embodiment has a single turn helical coil (104) which is carried internally of the vacuum chamber walls (108) (Fig.2) by a chamber shield (106). The chamber shield (106) protects the interior walls (108) (Fig.2) of the vacuum chamber (102) from the material being deposited within the interior of the plasma chamber (100). Radio frequency (RF) energy from an RF generator (404) is radiated from the coil (104) into the interior of the plasma chamber (100), which energizes a plasma within the plasma chamber (100). An ion flux strikes a negatively biased, magnetron-free target (110) positioned above the plasma chamber (100). No magnetron magnets are disposed above the magnetron-free target (110). The plasma ions eject material from the magnetron-free target (110) onto a substrate (112) which may be a wafer or other workpiece supported by a pedestal (114) at the bottom of the plasma chamber. It has been found that high density plasmas produce sufficient ionization to provide for a high deposition rate of target material onto a substrate, which allows for the elimination of magnetron magnetic fields and the attendant magnetron magnets. By eliminating the magnetron, the uniformity of the deposition of target material onto a workpiece can also be improved. In addition, the sidewall coverage of trench-like structures and contact holes and the like can also be increased. Furthermore, the rate of the deposition of target material onto a workpiece can be the same or better than that obtainable using magnetron sputtering.