会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Defect reference system automatic pattern classification
    • 缺陷参考系自动模式分类
    • US06466895B1
    • 2002-10-15
    • US09586540
    • 2000-05-31
    • Stefanie HarveyTerry Reiss
    • Stefanie HarveyTerry Reiss
    • G06F300
    • G05B19/41875G05B2219/32221G05B2219/37519H01L22/20H01L2924/0002Y02P90/14Y02P90/22Y02P90/265Y02P90/86H01L2924/00
    • A methodology is provided for qualitatively identifying features of an article, such as defects on the surface of a semiconductor substrate, with a string of symbols, such as numbers, according to relevant defect characteristics and information relating to the processing tools visited by the wafer, including reliability information. Embodiments include generalizing, after a defect on a wafer is discovered and inspected (as by optical review, SEM, EDS, AFM, etc.), each quantitative attribute of the defect such as the defect's size, material composition, color, position on the surface of the wafer, etc. into a qualitative category, assigning a numerical symbol to each attribute for identification, and sequencing the symbols in a predetermined manner. The identification sequences of all defects are stored in a database, where they are easily compared with other correspondingly identified defects. The identification sequence also includes a number representative of the wafer's last-visited processing tool, thereby associating the defect with a tool. After the defect is investigated and determined as being caused by a particular fault of the tool, this information is stored and linked to the defect's identification sequence. Thereafter, if a similar defect occurs in another wafer, the later defect's identification sequence is matched to that of the previous defect by searching the defect database, indicating the same cause for the later defect, thereby enabling ready identification of the root causes of defects, and enabling early corrective action to be taken.
    • 提供了一种方法,用于根据相关缺陷特性和与晶片访问的处理工具有关的信息,定性地识别物品的特征,例如半导体衬底的表面上的缺陷,具有诸如数字的符号串, 包括可靠性信息。 实施例包括在发现和检查晶片上的缺陷(如通过光学审查,SEM,EDS,AFM等)之后概括的缺陷的每个定量属性,例如缺陷的尺寸,材料组成,颜色,位置 将晶片的表面等划分为定性类别,为每个属性分配数字符号以进行识别,并以预定方式对符号进行排序。 所有缺陷的识别序列都存储在数据库中,可以方便地与其他相应识别的缺陷进行比较。 识别序列还包括表示晶片最后访问的处理工具的数字,从而将缺陷与工具相关联。 在缺陷被调查并确定为由工具的特定故障引起之后,该信息被存储并链接到缺陷的识别序列。 此后,如果在另一个晶片中出现相似的缺陷,则通过搜索缺陷数据库来跟踪先前缺陷的后续缺陷的识别序列,指示与之相关的缺陷相同的原因,从而能够准确地识别缺陷的根本原因, 并能够采取早期纠正措施。
    • 6. 发明授权
    • Method and apparatus for classifying faults based on wafer state data and sensor tool trace data
    • 基于晶片状态数据和传感器工具跟踪数据对故障进行分类的方法和装置
    • US07277824B1
    • 2007-10-02
    • US11180393
    • 2005-07-13
    • Matthew S. RyskoskiKevin R. Lensing
    • Matthew S. RyskoskiKevin R. Lensing
    • G01B5/28
    • G05B19/41875G05B2219/32221G05B2219/37519G05B2219/45031Y02P90/22
    • The present invention provides a method and apparatus for classifying faults. The method includes accessing wafer state data associated with at least one wafer processed by at least one processing tool and sensor tool trace data associated with the at least one processing tool and determining that at least one fault occurred based upon at least one of the wafer state data and the sensor tool trace data. The method also includes selecting, in response to determining that the at least one fault occurred, a subset of a plurality of faults based upon at least one of the wafer state data and the sensor tool trace data and selecting at least one fault from the subset of the plurality of faults based upon at least one of the wafer state data and the sensor tool trace data.
    • 本发明提供一种分类故障的方法和装置。 该方法包括访问与由至少一个处理工具处理的至少一个晶片相关联的晶片状态数据和与至少一个处理工具相关联的传感器工具跟踪数据,并且基于晶片状态中的至少一个确定至少一个故障 数据和传感器工具跟踪数据。 该方法还包括基于至少一个晶片状态数据和传感器工具跟踪数据选择响应于确定至少一个故障发生的多个故障的子集,并从该子集中选择至少一个故障 基于晶片状态数据和传感器工具跟踪数据中的至少一个的多个故障。
    • 7. 发明授权
    • System and method for real-time fault detection, classification, and correction in a semiconductor manufacturing environment
    • 在半导体制造环境中进行实时故障检测,分类和校正的系统和方法
    • US06980873B2
    • 2005-12-27
    • US10831064
    • 2004-04-23
    • Hsueh Chi Shen
    • Hsueh Chi Shen
    • G05B23/02G06F19/00
    • G05B23/024G05B2219/37519
    • A system and method for detecting a fault and identifying a remedy for the fault in real-time in a semiconductor product manufacturing facility are provided. In one example, the method includes importing data from a manufacturing device and data representing a plurality of different manufacturing devices into an analysis tool. The imported data is analyzed using the analysis tool to determine if a fault exists in the manufacturing device's operation and, if a fault exists, the fault is classified and a remedy for the fault is identified based at least partly on the classification. Configuration data used to control the manufacturing device may be updated, and the update may apply the remedy to the configuration information. The manufacturing device's operation may then be modified using the updated configuration data.
    • 提供了一种用于在半导体产品制造设施中实时检测故障并识别故障补救的系统和方法。 在一个示例中,该方法包括将来自制造设备的数据和表示多个不同制造设备的数据导入到分析工具中。 使用分析工具对导入的数据进行分析,以确定制造设备的操作中是否存在故障,如果存在故障,则对故障进行分类,并至少部分根据分类识别故障的补救措施。 可以更新用于控制制造装置的配置数据,并且更新可以将补救应用于配置信息。 然后可以使用更新的配置数据修改制造设备的操作。
    • 8. 发明申请
    • SYSTEM AND METHOD FOR REAL-TIME FAULT DETECTION, CLASSIFICATION, AND CORRECTION IN A SEMICONDUCTOR MANUFACTURING ENVIRONMENT
    • 半导体制造环境中的实时故障检测,分类和校正的系统和方法
    • US20050251276A1
    • 2005-11-10
    • US10831064
    • 2004-04-23
    • Hsueh Shen
    • Hsueh Shen
    • G05B23/02G06F19/00
    • G05B23/024G05B2219/37519
    • A system and method for detecting a fault and identifying a remedy for the fault in real-time in a semiconductor product manufacturing facility are provided. In one example, the method includes importing data from a manufacturing device and data representing a plurality of different manufacturing devices into an analysis tool. The imported data is analyzed using the analysis tool to determine if a fault exists in the manufacturing device's operation and, if a fault exists, the fault is classified and a remedy for the fault is identified based at least partly on the classification. Configuration data used to control the manufacturing device may be updated, and the update may apply the remedy to the configuration information. The manufacturing device's operation may then be modified using the updated configuration data.
    • 提供了一种用于在半导体产品制造设施中实时检测故障并识别故障补救的系统和方法。 在一个示例中,该方法包括将来自制造设备的数据和表示多个不同制造设备的数据导入到分析工具中。 使用分析工具对导入的数据进行分析,以确定制造设备的操作中是否存在故障,如果存在故障,则对故障进行分类,并至少部分根据分类识别故障的补救措施。 可以更新用于控制制造装置的配置数据,并且更新可以将补救应用于配置信息。 然后可以使用更新的配置数据修改制造设备的操作。
    • 9. 发明申请
    • MACHINING PROCESS MONITOR
    • 加工过程监控
    • WO2008142386A1
    • 2008-11-27
    • PCT/GB2008/001700
    • 2008-05-16
    • ROLLS-ROYCE PLCSAGE, ColinCLIFTON, David, Andrew
    • SAGE, ColinCLIFTON, David, Andrew
    • G05B19/4065
    • G05B19/4065G05B2219/34048G05B2219/37519G05B2219/37545G05B2219/50197
    • The invention concerns a manufacturing process monitor, in particular a machining process, and a method of multi-parameter data acquisition and analysis for process diagnostics. Multiple sensors (14, 16, 18, 20, 22) are attached to a machine tool (2) to monitor a plurality of machining parameters including machine power consumption, acoustic emissions, vibration, power and force. During each operation the sensor outputs (24, 26, 28, 30, 32, 34, 38, 40) are repeatedly sampled (36) and processed (46) to provide a signature (54) characteristic of the operation. The data is analysed to determine the limits of a normal machining operation, including the condition and status of the tools (6) and equipment (2). By storing the signatures (50) for a large number of operations of known "normal" and "abnormal" outcomes a data population is created with which new signatures can be compared and a diagnostic indication (54) produced. Warnings of abnormalities and abnormal events, such as tool damage, may be produced automatically and in real-time.
    • 本发明涉及制造过程监视器,特别是加工过程,以及用于过程诊断的多参数数据采集和分析方法。 多个传感器(14,16,18,20,22)连接到机床(2)以监视多个加工参数,包括机器功率消耗,声发射,振动,功率和力。 在每次操作期间,传感器输出(24,26,28,30,32,34,38,40)被重复采样(36)和处理(46)以提供操作的特征(54)。 分析数据以确定正常加工操作的限制,包括工具(6)和设备(2)的状态和状态。 通过存储已知“正常”和“异常”结果的大量操作的签名(50),创建可以比较新签名的数据群,并产生诊断指示(54)。 可能会自动和实时地产生异常和异常事件的警告,如刀具损坏。