会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • High track density dual stripe magnetoresistive (DSMR) head
    • 高轨道密度双条磁阻(DSMR)头
    • US5684658A
    • 1997-11-04
    • US727264
    • 1996-10-07
    • Xizeng ShiYimin GuoKochan JuCherng-Chyi HanYimin HsuJei-Wei Chang
    • Xizeng ShiYimin GuoKochan JuCherng-Chyi HanYimin HsuJei-Wei Chang
    • G11B5/012G11B5/39G11B5/48
    • G11B5/3954G11B5/012G11B5/3967G11B5/488
    • A method for forming a dual stripe magnetoresistive (DSMR) sensor element, and the dual stripe magnetoresistive (DSMR) sensor element formed through the method. To practice the method, there is formed upon a substrate a first magnetoresistive (MR) layer, where the first magnetoresistive (MR) layer has a first sensor region longitudinally magnetically biased in a first longitudinal bias direction through a patterned first longitudinal magnetic biasing layer. There is then formed a second magnetoresistive (MR) layer parallel with and separated from the first magnetoresistive (MR) layer by an insulator layer. The second magnetoresistive (MR) layer has a second sensor region longitudinally magnetically biased in a second longitudinal bias direction through a patterned second longitudinal magnetic biasing layer. The first longitudinal bias direction and the second longitudinal bias direction are substantially parallel. In addition, the first sensor region and the second sensor region are physically offset. Finally, the first magnetoresistive (MR) layer is electromagnetically biased with a first bias current in a first bias current direction and the second magnetoresistive (MR) layer is electromagnetically biased with a second bias current in a second bias current direction, where the first bias current direction and the second bias current direction are substantially parallel.
    • 一种用于形成双条磁阻(DSMR)传感器元件的方法和通过该方法形成的双条带磁阻(DSMR)传感器元件。 为了实施该方法,在衬底上形成第一磁阻(MR)层,其中第一磁阻(MR)层具有通过图案化的第一纵向磁偏置层在第一纵向偏置方向上纵向磁偏置的第一传感器区。 然后通过绝缘体层形成与第一磁阻(MR)层平行并与第一磁阻(MR)层分离的第二磁阻(MR)层。 第二磁阻(MR)层具有通过图案化的第二纵向磁偏置层在第二纵向偏置方向上纵向磁偏置的第二传感器区。 第一纵向偏置方向和第二纵向偏置方向基本平行。 此外,第一传感器区域和第二传感器区域被物理偏移。 最后,第一磁阻(MR)层在第一偏置电流方向上以第一偏置电流进行电磁偏置,第二磁阻(MR)层在第二偏置电流方向上以第二偏置电流进行电磁偏置,其中第一偏置 电流方向和第二偏置电流方向基本上平行。
    • 2. 发明授权
    • Method and test structure for determining magnetic domain switching
field when fabricating patterned exchange biased magnetoresistive (MR)
head
    • US5703485A
    • 1997-12-30
    • US687903
    • 1996-07-29
    • Yimin GuoKochan JuYimin Hsu
    • Yimin GuoKochan JuYimin Hsu
    • G01R33/09G11B5/31G11B5/39G01R33/02H01L43/00H01F10/02
    • B82Y25/00G01R33/093G11B5/3932G11B5/3166
    • A method for determining through a test structure a longitudinal magnetic exchange field within a patterned exchange biased magnetoresistive (MR) sensor element. To practice the method, there is first provided a substrate. Formed upon the substrate is a patterned magnetoresistive (MR) layer which has a projected length upon the substrate and a projected width upon the substrate. There is formed at a pair of separated locations over the patterned magnetoresistive (MR) layer a pair of patterned conductor lead layers. The pair of patterned conductor lead layers is separated by a track width of the patterned magnetoresistive (MR) layer, where the track width is smaller than the projected width. There is also formed within the track width and upon the patterned magnetoresistive (MR) layer a minimum of one patterned anti-ferromagnetic layer separated from each patterned conductor lead layer within the pair of patterned conductor lead layers by a minimum of one unpinned width of the patterned magnetoresistive (MR) layer. The patterned magnetoresistive (MR) layer also has a minimum of one pinned width of the patterned magnetoresistive (MR) layer beneath the minimum of one patterned anti-ferromagnetic layer. The projected length, the unpinned width and the pinned width of the patterned magnetoresistive (MR) layer are chosen such that the magnetic domains within the unpinned width and the pinned width are coupled such that they switch jointly in an externally applied magnetic field. Finally, there is measured through the patterned conductor lead layers a resistance change within the patterned magnetoresistive (MR) layer when the patterned magnetoresistive (MR) layer is exposed to the externally applied magnetic field. The invention also contemplates the test structure through which the method of the invention is practiced.