会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • NANOSCALE WIRE-BASED MEMORY DEVICES
    • 基于纳米电路的存储器件
    • WO2009134291A3
    • 2010-09-10
    • PCT/US2009000337
    • 2009-01-21
    • HARVARD COLLEGELIEBER CHARLES MDONG YAJIELU WEIYU GUIHUAMCALPINE MICHAEL
    • LIEBER CHARLES MDONG YAJIELU WEIYU GUIHUAMCALPINE MICHAEL
    • H01L27/10H01L29/06H01L29/16
    • H01L29/0665B82Y10/00G11C13/0002G11C13/0069G11C2213/77G11C2213/81H01L27/10H01L27/101H01L29/0673H01L29/16H01L29/1602H01L29/1604H01L2924/0002H01L2924/00
    • The present invention generally relates to nanotechnology and sub- microelectronic devices that can be used in circuitry and, in particular, to nanoscale wires and other nanostructures able to encode data. One aspect of the present invention is directed to a device comprising an electrical crossbar array comprising at least two crossed wires at a cross point. In some cases, at least one of the crossed wires is a nanoscale wire, and in certain instances, at least one of the crossed wires is a nanoscale wire comprising a core and at least one shell surrounding the core. For instance, the core may comprise a crystal (e.g., crystalline silicon) and the shell may be at least partially amorphous (e.g., amorphous silicon). In certain embodiments, the cross point may exhibit intrinsic current rectification, or other electrical behaviors, and the cross point can be used as a memory device. For example, in one embodiment, the cross point may exhibit a first conductance at a positive voltage, and the cross point may exhibit a second conductance at a negative voltage. Accordingly, by applying suitable voltages to the cross point, data may be stored at the cross point. Other aspects of the present invention are directed to systems and methods for making or using such devices, kits involving such devices, or the like.
    • 本发明一般涉及可用于电路中的纳米技术和亚微电子器件,特别涉及能够对数据进行编码的纳米线和其他纳米结构。 本发明的一个方面涉及一种装置,其包括在交叉点处包括至少两根交叉线的电横排阵列。 在一些情况下,交叉导线中的至少一个是纳米线,并且在某些情况下,交叉导线中的至少一个是纳米线,其包括芯和围绕芯的至少一个壳。 例如,芯可以包括晶体(例如,晶体硅),并且壳可以是至少部分无定形的(例如非晶硅)。 在某些实施例中,交叉点可以表现出固有的电流整流或其他电气行为,并且交叉点可以用作存储器件。 例如,在一个实施例中,交叉点可以在正电压下呈现第一电导,并且交叉点可以在负电压下显示第二电导。 因此,通过向交叉点施加合适的电压,可以在交叉点存储数据。 本发明的其他方面涉及用于制造或使用这种装置的系统和方法,涉及这种装置的套件等。
    • 3. 发明申请
    • NANOBIOELECTRONICS
    • WO2008027078A2
    • 2008-03-06
    • PCT/US2007006545
    • 2007-03-15
    • HARVARD COLLEGEPATOLSKY FERNANDOTIMKO BRIAN PYU GUIHUALIEBER CHARLES M
    • PATOLSKY FERNANDOTIMKO BRIAN PYU GUIHUALIEBER CHARLES M
    • G01N33/5058B82Y10/00H01L29/0665H01L29/0673H01L29/1606
    • The present invention generally relates to nanobioelectronics and, in some cases, to circuits comprising nanoelectronic elements, such as nanotubes and/or nanowires, and biological components, such as neurons. In one aspect, cells, such as neurons, are positioned in electrical communication with one or more nanoscale wires. The nanoscale wires may be used to stimulate the cells, and/or determine an electrical condition of the cells. More than one nanoscale wire may be positioned in electrical communication with the cell, for example, in distinct regions of the cell. However, the nanoscale wires may be positioned such that they are relatively close together, for example, spaced apart by no more than about 200 nm. The nanoscale wires may be disposed on a substrate, for example, between electrodes, and the cells may be adhered to the substrate, for example, using cell adhesion factors such as polylysine. Also provided in other aspects of the invention are methods for making and using such devices, kits for using the same, and the like.
    • 本发明一般涉及纳米生物电子学,并且在一些情况下涉及包含纳米电子元件(例如纳米管和/或纳米线)和生物组分(例如神经元)的电路。 在一个方面,诸如神经元的细胞被定位成与一个或多个纳米级导线电连通。 纳米级线可用于刺激细胞,和/或确定细胞的电状况。 例如,在电池的不同区域中,可以放置多于一根的纳米级电线与电池电连通。 然而,纳米级线材可以定位成使得它们相对靠近在一起,例如间隔不超过约200nm。 纳米级线可以设置在例如电极之间的基板上,并且例如可以使用细胞粘附因子例如聚赖氨酸将细胞粘附到基板。 在本发明的其他方面也提供了制造和使用这种装置的方法,使用它们的试剂盒等。
    • 4. 发明申请
    • NANOSCALE WIRE-BASED DATA STORAGE
    • 基于NANOSCALE WIRE的数据存储
    • WO2007044034A3
    • 2007-09-13
    • PCT/US2005044212
    • 2005-12-06
    • HARVARD COLLEGELIEBER CHARLES MWU YUEYAN HAO
    • LIEBER CHARLES MWU YUEYAN HAO
    • G11C11/22H01L29/78
    • H01L29/0665B82Y10/00B82Y30/00G11C11/22G11C11/223G11C11/54G11C11/56G11C11/5657G11C13/003G11C13/025G11C2213/16G11C2213/17G11C2213/18G11C2213/75G11C2213/77H01L29/0673H01L29/068H01L29/78391
    • The present invention generally relates to nanotechnology and sub­microelectronic devices that can be used in circuitry and, in some cases, to nanoscale wires and other nanostructures able to encode data. One aspect of the invention provides a nanoscale wire or other nanostructure having a region that is electrically-polarizable, for example, a nanoscale wire may comprise a core and an electrically-polarizable shell. In some cases, the electrically-polarizable region is able to retain its polarization state in the absence of an external electric field. All, or only a portion, of the electrically­polarizable region may be polarized, for example, to encode one or more bits of data. In one set of embodiments, the electrically-polarizable region comprises a functional oxide or a ferroelectric oxide material, for example, BaTiO 3 , lead zirconium titanate, or the like. In some embodiments, the nanoscale wire (or other nanostructure) may further comprise other materials, for example, a separation region separating the electrically­polarizable region from other regions of the nanoscale wire. For example, in a nanoscale wire, one or more intermediate shells may separate the core from the electrically­polarizable shell.
    • 本发明一般涉及纳米技术和亚微米电子器件,其可用于电路中,并且在一些情况下可用于能够对数据进行编码的纳米线和其他纳米结构。 本发明的一个方面提供了具有可电极化的区域的纳米级线或其它纳米结构,例如,纳米线可以包括芯和电可极化的壳。 在一些情况下,电极化区域能够在没有外部电场的情况下保持其极化状态。 可电极化区域的全部或仅一部分可以被极化,例如编码一个或多个数据位。 在一组实施方案中,电极化区域包括功能性氧化物或铁电氧化物材料,例如BaTiO 3,钛酸铅锆等。 在一些实施例中,纳米线(或其他纳米结构)可以进一步包括其它材料,例如将电极化区域与纳米尺度线的其它区域分开的分离区域。 例如,在纳米尺度的线中,一个或多个中间壳可以将芯与电极化的壳分开。
    • 6. 发明申请
    • NANOWIRE PHOTONIC CIRCUITS, COMPONENTS THEREOF, AND RELATED METHODS
    • 纳米光电子电路及其组件及相关方法
    • WO2006015105A2
    • 2006-02-09
    • PCT/US2005026759
    • 2005-07-28
    • HARVARD COLLEGELIEBER CHARLES MGREYTAK ANDREW BBARRELET CARL J
    • LIEBER CHARLES MGREYTAK ANDREW BBARRELET CARL J
    • G02B6/00
    • G02B6/107B82Y20/00G02B6/2746
    • The present invention generally relates to energy transmission in materials, specifically, electromagnetic (e.g., photonic) pathways and circuits, including various components for use in such pathways and circuits, for example, nanoscale wires such as semiconductor nanowires. One aspect of the invention is the propagation of energy in the form of electromagnetic radiation in a material such as a nanoscale wire at or near the band edge (i.e., at or near the band gap wavelength), of the material, as defined below, optionally along with energy propagation at one or more different energy levels. Such propagation allows for a variety of new arrangements and methods, including diodes and other devices, transmission of electromagnetic radiation around tight corners with low loss, coupling between materials, electric field-generated generation of amplitude­-varying electromagnetic radiation, and other features.
    • 本发明一般涉及材料中的能量传输,具体地,电磁(例如,光子)途径和电路,包括用于这种路径和电路的各种组件,例如纳米尺度线,例如半导体纳米线。 本发明的一个方面是在如下所定义的材料的带边缘(即,在带隙波长附近或接近带隙波长处)处或附近的诸如纳米线的材料中的电磁辐射形式的能量的传播, 可选地伴随着在一个或多个不同能级的能量传播。 这种传播允许各种新的布置和方法,包括二极管和其他装置,以低损耗,材料之间的耦合,电场产生的振幅变化的电磁辐射的产生以及其它特征的电磁辐射在紧密的拐角附近传输。
    • 7. 发明申请
    • NANOSCALE WIRE METHODS AND DEVICES
    • 纳米线方法和器件
    • WO2007145701A3
    • 2008-05-29
    • PCT/US2007008540
    • 2007-04-06
    • HARVARD COLLEGENAM SUNG WOOJAVEY ALILIEBER CHARLES M
    • NAM SUNG WOOJAVEY ALILIEBER CHARLES M
    • B82B3/00H01L29/06
    • H01L29/0665B82Y10/00H01L29/0673H01L29/1606H01L29/7781H01L29/78
    • The present invention generally relates to nanoscale wire methods and devices, including systems and methods for positioning nanoscale wires on a surface, and articles made therefrom. One aspect of the invention is generally directed to aligned nanoscale wires on a surface of a substrate, and systems and methods of positioning such nanoscale wires on the surface. In one set of embodiments, a first substrate is provided having a plurality of nanoscale wires, and at least some of the nanoscale wires are transferred to a second substrate by contacting at least some of the nanoscale wires with the second substrate, e.g., by moving or "sliding" the substrates relative to each other, in some cases causing alignment of the nanoscale wires on the second substrate. Another aspect of the invention is generally directed to electrical devices comprising a number of planes defined by nanoscale wires, e.g., in a "stacked" configuration. Yet other aspects of the invention are directed to nanoscale wires that can be used as sensors, e.g., in such devices. Still other aspects of the invention are directed to systems and methods for making and using such devices, kits involving the same, and the like.
    • 本发明一般涉及纳米线材的方法和装置,包括用于在表面上定位纳米尺度线的系统和方法,以及由其制成的制品。 本发明的一个方面通常涉及衬底表面上的对准的纳米尺度线,以及将这种纳米级线定位在表面上的系统和方法。 在一组实施例中,提供具有多个纳米尺寸线的第一衬底,并且通过使至少一些纳米尺度线与第二衬底接触,例如通过移动而将至少一些纳米级导线转移到第二衬底 或者使基板相对于彼此“滑动”,在一些情况下引起第二基板上的纳米尺寸线的对准。 本发明的另一方面通常涉及包括由纳米尺度线限定的多个平面(例如“堆叠”)构造的电气装置。 本发明的其它方面涉及可用作传感器的纳米尺度线,例如在这种装置中。 本发明的其它方面涉及用于制造和使用这种装置的系统和方法,涉及其的套件等。
    • 8. 发明申请
    • NANOWIRE HETEROSTRUCTURES
    • WO2006132659A3
    • 2007-07-05
    • PCT/US2005034345
    • 2005-09-21
    • HARVARD COLLEGELU WEIXIANG JIETIMKO BRIAN PWU YUEYAN HAOLIEBER CHARLES M
    • LU WEIXIANG JIETIMKO BRIAN PWU YUEYAN HAOLIEBER CHARLES M
    • H01L29/06
    • B82Y10/00G11C2213/17G11C2213/18H01L29/0665H01L29/0673H01L29/068H01L29/1606H01L29/165
    • The present invention generally relates to nanoscale heterostructures and, in some cases, to nanowire heterostructures exhibiting ballistic transport, and/or to metal-semiconductor junctions that that exhibit no or reduced Schottky barriers. One aspect of the invention provides a solid nanowire having a core and a shell, both of which are essentially undoped. For example, in one embodiment, the core may consist essentially of undoped germanium and the shell may consist essentially of undoped silicon. Carriers are injected into the nanowire, which can be ballistically transported through the nanowire. In other embodiments, however, the invention is not limited to solid nanowires, and other configurations, involving other nanoscale wires, are also contemplated within the scope of the present invention. Yet another aspect of the invention provides a junction between a metal and a nanoscale wire that exhibit no or reduced Schottky barriers. As a non-limiting example, a nanoscale wire having a core and a shell may be in physical contact with a metal electrode, such that the Schottky barrier to the core is reduced or eliminated. Still other aspects of the invention are directed to electronic devices exhibiting such properties, and techniques for methods of making or using such devices.
    • 本发明一般涉及纳米尺度异质结构,在某些情况下涉及显示弹道输运的纳米线异质结构,和/或涉及没有或减少的肖特基势垒的金属 - 半导体结。 本发明的一个方面提供了具有核和壳的固体纳米线,两者都基本上是未掺杂的。 例如,在一个实施例中,芯可以基本上由未掺杂的锗组成,并且壳可以基本上由未掺杂的硅组成。 载体被注入纳米线,可以通过纳米线进行弹道传输。 然而,在其它实施方案中,本发明不限于固体纳米线,并且涉及其它纳米级线的其它构型也在本发明的范围内。 本发明的另一方面提供了金属和纳米尺寸线之间的连接处,其不显示或减小肖特基势垒。 作为非限制性实例,具有芯和壳的纳米线可以与金属电极物理接触,使得芯的肖特基势垒被减少或消除。 本发明的其它方面涉及具有这种性质的电子设备,以及制造或使用这些设备的方法的技术。