会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • High-luminescence silicon electroluminescence device
    • 高发光硅电致发光器件
    • US20060189014A1
    • 2006-08-24
    • US11066713
    • 2005-02-24
    • Tingkai LiPooran JoshiWei GaoYoshi OnoSheng Hsu
    • Tingkai LiPooran JoshiWei GaoYoshi OnoSheng Hsu
    • H01L21/00
    • H01L31/03046Y02E10/544Y02P70/521
    • A method for forming a high-luminescence Si electroluminescence (EL) phosphor is provided, with an EL device made from the Si phosphor. The method comprises: depositing a silicon-rich oxide (SRO) film, with Si nanocrystals, having a refractive index in the range of 1.5 to 2.1, and a porosity in the range of 5 to 20%; and, post-annealing the SRO film in an oxygen atmosphere. DC-sputtering or PECVD processes can be used to deposit the SRO film. In one aspect the method further comprises: HF buffered oxide etching (BOE) the SRO film; and, re-oxidizing the SRO film, to form a SiO2 layer around the Si nanocrystals in the SRO film. In one aspect, the SRO film is re-oxidized by annealing in an oxygen atmosphere. In this manner, a layer of SiO2 is formed around the Si nanocrystals having a thickness in the range of 1 to 5 nanometers (nm).
    • 提供一种用于形成高发光Si电致发光(EL)荧光体的方法,其具有由Si荧光体制成的EL器件。 该方法包括:用Si纳米晶体沉积富含氧的氧化物(SRO)膜,折射率在1.5至2.1范围内,孔隙率在5至20%的范围内; 并且在氧气氛中对SRO膜进行后退火。 DC溅射或PECVD工艺可用于沉积SRO膜。 在一个方面,该方法还包括:HF缓冲氧化物蚀刻(BOE)SRO膜; 并且再次氧化SRO膜,以在SRO膜中的Si纳米晶体周围形成SiO 2层。 在一个方面,SRO膜通过在氧气气氛中退火再次氧化。 以这种方式,在具有1至5纳米(nm)范围内的厚度的Si纳米晶体周围形成SiO 2层。
    • 3. 发明申请
    • Thin film oxide interface
    • 薄膜氧化物界面
    • US20050136695A1
    • 2005-06-23
    • US11046571
    • 2005-01-28
    • Pooran JoshiJohn HartzellMasahiro AdachiYoshi Ono
    • Pooran JoshiJohn HartzellMasahiro AdachiYoshi Ono
    • H01L21/316H01L21/336H01L29/49H01L29/786H01L23/58H01L21/26H01L21/324H01L21/42H01L21/477
    • H01L29/66757H01L29/4908H01L29/66772
    • An oxide interface and a method for fabricating an oxide interface are provided. The method comprises forming a silicon layer and an oxide layer overlying the silicon layer. The oxide layer is formed at a temperature of less than 400° C. using an inductively coupled plasma source. In some aspects of the method, the oxide layer is more than 20 nanometers (nm) thick and has a refractive index between 1.45 and 1.47. In some aspects of the method, the oxide layer is formed by plasma oxidizing the silicon layer, producing plasma oxide at a rate of up to approximately 4.4 nm per minute (after one minute). In some aspects of the method, a high-density plasma enhanced chemical vapor deposition (HD-PECVD) process is used to form the oxide layer. In some aspects of the method, the silicon and oxide layers are incorporated into a thin film transistor.
    • 提供氧化物界面和制造氧化物界面的方法。 该方法包括形成硅层和覆盖硅层的氧化物层。 使用电感耦合等离子体源在低于400℃的温度下形成氧化物层。 在该方法的一些方面,氧化物层的厚度大于20纳米(nm),折射率在1.45和1.47之间。 在该方法的一些方面,通过等离子体氧化硅层形成氧化物层,以每分钟高达约4.4nm的速率产生等离子体氧化物(1分钟后)。 在该方法的某些方面,使用高密度等离子体增强化学气相沉积(HD-PECVD)工艺来形成氧化物层。 在该方法的一些方面,将硅和氧化物层结合到薄膜晶体管中。
    • 6. 发明申请
    • Non-Stoichiometric SiOxNy Optical Filter Fabrication
    • 非化学计量的SiOxNy光学滤波器制造
    • US20100151152A1
    • 2010-06-17
    • US12700395
    • 2010-02-04
    • Pooran JoshiApostolos T. VoutsasJohn W. Hartzell
    • Pooran JoshiApostolos T. VoutsasJohn W. Hartzell
    • C23C16/34C23C16/42B05D5/06
    • G02B5/286Y10T428/259
    • A non-stoichiometric SiOXNY thin-film optical filter is provided. The filter is formed from a substrate and a first non-stoichiometric SiOX1NY1 thin-film overlying the substrate, where (X1+Y1 0). The first non-stoichiometric SiOX1NY1 thin-film has a refractive index (n1) in the range of about 1.46 to 3, and complex refractive index (N1=n1+ik1), where k1 is an extinction coefficient in a range of about 0 to 0.5. The first non-stoichiometric SiOX1NY1 thin-film may be either intrinsic or doped. In one aspect, the first non-stoichiometric SiOX1NY1 thin-film has nanoparticles with a size in the range of about 1 to 10 nm. A second non-stoichiometric SiOX2NY2 thin-film may overlie the first non-stoichiometric SiOX1NY1 thin-film, where Y1≠Y2. The second non-stoichiometric SiOX1NY1 thin-film may be intrinsic and doped. In another variation, a stoichiometric SiOX2NY2 thin-film, intrinsic or doped, overlies the first non-stoichiometric SiOX1NY1 thin-film.
    • 提供非化学计量的SiOXNY薄膜滤光片。 滤光片由衬底和覆盖衬底的第一非化学计量的SiOX1NY1薄膜形成,其中(X1 + Y1 <2和Y1> 0)。 第一非化学计量的SiOX1NY1薄膜的折射率(n1)在约1.46至3的范围内,复数折射率(N1 = n1 + ik1),其中k1是约0至 0.5。 第一非化学计量的SiOX1NY1薄膜可以是固有的或掺杂的。 在一个方面,第一非化学计量的SiOX1NY1薄膜具有尺寸在约1至10nm范围内的纳米颗粒。 第二非化学计量的SiOX2NY2薄膜可以覆盖第一非化学计量的SiOX1NY1薄膜,其中Y1≠Y2。 第二非化学计量的SiOX1NY1薄膜可以是固有的和掺杂的。 在另一个实施方案中,本征或掺杂的化学计量的SiOX2NY2薄膜覆盖在第一非化学计量的SiOX1NY1薄膜上。
    • 8. 发明申请
    • High density plasma non-stoichiometric SiOxNy films
    • 高密度等离子体非化学计量的SiOxNy薄膜
    • US20070155137A1
    • 2007-07-05
    • US11698623
    • 2007-01-26
    • Pooran JoshiApostolos VoutsasJohn Hartzell
    • Pooran JoshiApostolos VoutsasJohn Hartzell
    • H01L21/20
    • G02B1/10C23C16/308C23C16/509G02B1/11
    • A high-density plasma method is provided for forming a SiOXNY thin-film. The method provides a substrate and introduces a silicon (Si) precursor. A thin-film is deposited overlying the substrate, using a high density (HD) plasma-enhanced chemical vapor deposition (PECVD) process. As a result, a SiOXNY thin-film is formed, where (X+Y 0). The SiOXNY thin-film can be stoichiometric or non-stoichiometric. The SiOXNY thin-film can be graded, meaning the values of X and Y vary with the thickness of the SiOXNY thin-film. Further, the process enables the in-situ deposition of a SiOXNY thin-film multilayer structure, where the different layers may be stoichiometric, non-stoichiometric, graded, and combinations of the above-mentioned types of SiOXNY thin-films.
    • 提供了高密度等离子体法,用于形成SiO x N N Y Y薄膜。 该方法提供衬底并引入硅(Si)前体。 使用高密度(HD)等离子体增强化学气相沉积(PECVD)工艺将薄膜沉积在衬底上。 结果,形成SiO(X + Y <2和Y> 0)的SiO N 薄膜。 SiO 2薄膜可以是化学计量的或非化学计量的。 SiO 2薄膜可以分级,这意味着X和Y的值随着SiO 2 X N的厚度而变化, SUB> Y 薄膜。 此外,该方法能够实现SiO 2薄膜多层结构的原位沉积,其中不同的层可以是化学计量的,非化学计量的,分级的, 以及上述类型的SiO x N N Y Y薄膜的组合。
    • 9. 发明申请
    • Oxide interface with improved oxygen bonding
    • 具有改善氧键的氧化物界面
    • US20070013035A1
    • 2007-01-18
    • US11524783
    • 2006-09-21
    • Pooran Joshi
    • Pooran Joshi
    • H01L23/58
    • H01L29/78603H01L29/4908H01L29/66757H01L29/78609
    • A deposition oxide interface with improved oxygen bonding and a method for bonding oxygen in an oxide layer are provided. The method includes depositing an M oxide layer where M is a first element selected from a group including elements chemically defined as a solid and having an oxidation state in a range of +2 to +5, plasma oxidizing the M oxide layer at a temperature of less than 400° C. using a high density plasma source, and in response to plasma oxidizing the M oxide layer, improving M-oxygen bonding in the M oxide layer. The plasma oxidation process diffuses excited oxygen radicals into the oxide layer. The plasma oxidation is performed at specified parameters including temperature, power density, pressure, process gas composition, and process gas flow. In some aspects of the method, M is silicon, and the oxide interface is incorporated into a thin film transistor.
    • 提供了具有改善的氧键的沉积氧化物界面和氧化层中的氧键合方法。 该方法包括沉积M氧化物层,其中M是选自化学上定义为固体且具有+2至+5范围内的氧化态的元素的第一元素,在氧化层中氧化氧化层的温度为 小于400℃,使用高密度等离子体源,并且响应于等离子体氧化M氧化物层,改善M氧化物层中的M-氧键。 等离子体氧化过程将激发的氧自由基扩散到氧化物层中。 等离子体氧化在包括温度,功率密度,压力,工艺气体成分和工艺气体流量在内的特定参数下进行。 在该方法的一些方面,M是硅,并且氧化物界面被结合到薄膜晶体管中。