会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Deposition of coatings using an atmospheric pressure plasma jet
    • 使用大气压等离子体射流沉积涂层
    • US06194036B1
    • 2001-02-27
    • US09176046
    • 1998-10-20
    • Steve E. BabayanGary S. SelwynRobert F. Hicks
    • Steve E. BabayanGary S. SelwynRobert F. Hicks
    • C23C16513
    • C23C16/513H05H1/42H05H2001/245H05H2001/4697
    • Deposition of coatings using an atmospheric pressure plasma jet. The use of a nonthermal source which is capable of operation at 760 torr is demonstrated. As an example of the application of the present invention, a helium/oxygen gas mixture is introduced into the annular region between two coaxial electrodes driven by a 13.56 MHz radio frequency (rf) source at between 40 and 500 W to produce a stable plasma jet. Silicon dioxide films are deposited by introducing tetraethoxysilane (TEOS) into the effluent stream. A deposition rate of 3020±250 Å/min. is achieved with an rf power of 400 W, 0.2 torr of TEOS, 11.1 torr of oxygen, 748.7 torr of helium, and a total gas flow rate of 41 L/min. The deposition rate depends on the oxygen partial pressure, the TEOS partial pressure, and the rf power to the 0.28, 0.47, and 1.41 powers, respectively. However, increasing the temperature decreases the deposition rate. The observed dielectric constants of the films decrease from 5.0±0.2 to 3.81±0.03 as the deposition temperature increases from 115 to 350° C. Infrared spectra of the deposited films at 350° C. show no carbon or hydroxyl ion contamination, indicating excellent material purity.
    • 使用大气压等离子体射流沉积涂层。 证明了使用能够在760托下操作的非热源。 作为本发明的应用的一个实例,氦/氧气体混合物被引入在由13.56MHz射频(RF)源驱动的在40和500W之间的两个同轴电极之间的环形区域中,以产生稳定的等离子体射流 。 通过将四乙氧基硅烷(TEOS)引入流出物流中沉积二氧化硅膜。 沉积速率为3020±250 / min。 通过功率为400W,TEOS为0.2乇,氧气为11.1乇,氦气为748.7乇,总气体流量为41L / min。 沉积速率取决于氧气分压,TEOS分压,和功率分别为0.28,0.47和1.41的功率。 然而,增加温度降低了沉积速率。 观察到的介电常数随着沉积温度从115℃升高到350℃,从5.0±0.2降低到3.81±0.03。沉积膜在350℃下的红外光谱显示没有碳或羟基离子污染,表明优异的材料 纯度。
    • 2. 发明授权
    • Large area atmospheric-pressure plasma jet
    • 大面积大气压等离子体射流
    • US06262523B1
    • 2001-07-17
    • US09295942
    • 1999-04-21
    • Gary S. SelwynIvars HeninsSteve E. BabayanRobert F. Hicks
    • Gary S. SelwynIvars HeninsSteve E. BabayanRobert F. Hicks
    • H01J724
    • H01J37/32009H01J37/32082H05H1/46H05H2001/466H05H2245/121
    • Large area atmospheric-pressure plasma jet. A plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250° C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two planar, parallel electrodes are employed to generate a plasma in the volume therebetween. A “jet” of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly spacing the rf-powered electrode. Because of the atmospheric pressure operation, there is a negligible density of ions surviving for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike the situation for low-pressure plasma sources and conventional plasma processing methods.
    • 大面积大气压等离子体射流。 描述了可以在大气压和接近室温下使用13.56MHz rf功率工作的等离子体放电。 与等离子体炬不同,放电产生的气相流出物不高于250℃,施加的功率为约300W,并且显示出明显的非热特性。 在最简单的设计中,使用两个平面的平行电极来产生它们之间的体积中的等离子体。 产生能够快速清洗或蚀刻金属和其他材料的长寿命亚稳态和反应性物质的“射流”,其延伸超过电极开口端的8英寸。 这些物质也可以除去膜和涂层。 通过使用含有He的气体混合物,通过使用高流速限制电离,并通过适当地间隔rf供电的电极,在装置中防止了电弧。 由于大气压力操作,与低压等离子体源和常规等离子体处理方法的情况不同,存在离子的密度可忽略不计,超过有效等离子体放电足够长的距离以轰击工件。
    • 3. 发明授权
    • Large area, atmospheric pressure plasma for downstream processing
    • 大面积,大气压等离子体用于下游加工
    • US08800485B2
    • 2014-08-12
    • US13752001
    • 2013-01-28
    • Gary S. Selwyn
    • Gary S. Selwyn
    • C23C16/00H01L21/00
    • H05H1/46H01J37/32082H01J37/32357H01J37/32596H01J37/32825H05H1/2406H05H2001/2418H05H2001/2431
    • An arcless, atmospheric-pressure plasma generating apparatus capable of producing a large-area, temperature-controlled, stable discharge at power densities between about 0.1 W/cm3 and about 200 W/cm3, while having an operating gas temperature of less than 50° C., for processing materials outside of the discharge, is described. The apparatus produces active chemical species, including gaseous metastables and radicals which may be used for polymerization (either free radical-induced or through dehydrogenation-based polymerization), surface cleaning and modification, etching, adhesion promotion, and sterilization, as examples. The invention may include either a cooled rf-driven electrode or a cooled ground electrode, or two cooled electrodes, wherein active components of the plasma may be directed out of the plasma and onto an external workpiece without simultaneously exposing a material to the electrical influence or ionic components of the plasma.
    • 一种无弧大气压等离子体发生装置,其能够以约0.1W / cm 3至约200W / cm 3的功率密度产生大面积,温度控制,稳定的放电,同时具有小于50°的工作气体温度 描述了用于处理放电以外的材料的C. 作为实例,该装置产生活性化学物质,包括可用于聚合(自由基诱导或基于脱氢的聚合),表面清洁和改性,蚀刻,粘附促进和灭菌的气态亚稳态和自由基。 本发明可以包括冷却的rf驱动电极或冷却的接地电极或两个冷却的电极,其中等离子体的有源部件可以被引导出等离子体并且被引导到外部工件上,而不会将材料暴露于电气影响或 等离子体的离子组分。
    • 4. 发明授权
    • Large area, atmospheric pressure plasma for downstream processing
    • 大面积,大气压等离子体用于下游加工
    • US08361276B2
    • 2013-01-29
    • US12029386
    • 2008-02-11
    • Gary S. Selwyn
    • Gary S. Selwyn
    • C23C16/00H01L21/00
    • H05H1/46H01J37/32082H01J37/32357H01J37/32596H01J37/32825H05H1/2406H05H2001/2418H05H2001/2431
    • An arcless, atmospheric-pressure plasma generating apparatus capable of producing a large-area, temperature-controlled, stable discharge at power densities between about 0.1 W/cm3 and about 200 W/cm3, while having an operating gas temperature of less than 50° C., for processing materials outside of the discharge, is described. The apparatus produces active chemical species, including gaseous metastables and radicals which may be used for polymerization (either free radical-induced or through dehydrogenation-based polymerization), surface cleaning and modification, etching, adhesion promotion, and sterilization, as examples. The invention may include either a cooled rf-driven electrode or a cooled ground electrode, or two cooled electrodes, wherein active components of the plasma may be directed out of the plasma and onto an external workpiece without simultaneously exposing a material to the electrical influence or ionic components of the plasma.
    • 一种无弧大气压等离子体发生装置,其能够以约0.1W / cm 3至约200W / cm 3的功率密度产生大面积,温度控制,稳定的放电,同时具有小于50°的工作气体温度 描述了用于处理放电以外的材料的C. 作为实例,该装置产生活性化学物质,包括可用于聚合(自由基诱导或基于脱氢的聚合),表面清洁和改性,蚀刻,粘附促进和灭菌的气态亚稳态和自由基。 本发明可以包括冷却的rf驱动电极或冷却的接地电极或两个冷却的电极,其中等离子体的有源部件可以被引导出等离子体并且被引导到外部工件上,而不会将材料暴露于电气影响或 等离子体的离子组分。
    • 5. 发明申请
    • TREATMENT OF FIBROUS MATERIALS USING ATMOSPHERIC PRESSURE PLASMA POLYMERIZATION
    • 使用大气压力等离子体聚合处理纤维材料
    • US20080107822A1
    • 2008-05-08
    • US11556130
    • 2006-11-02
    • Gary S. SelwynMatthew R. BarnesCaterina VidoliHeathcliff L. Vaz
    • Gary S. SelwynMatthew R. BarnesCaterina VidoliHeathcliff L. Vaz
    • H05H1/00B05B5/00
    • C23C16/50D06B19/00D06C29/00D06M10/10D06M14/18D06M15/277D21H19/16D21H19/32D21H23/44D21H25/04
    • An apparatus and method for plasma finishing of fibrous materials including paper and knitted, woven and non-woven fibrous substrates such that desired characteristics are imparted are described. The method includes depositing a monomer comprising at least one fluorocarbon monomer with chemical additives, as required, at atmospheric pressure onto the paper or knitted, woven or non-woven substrate; exposing the monomer on a single surface of the fibrous material to an inert gas, atmospheric-pressure plasma, thereby causing polymerization of the monomer species; and repeating this sequence using multiple sequential deposition and plasma discharge steps to create a layered surface having durability against abrasion for both water-based laundry methods and dry-cleaning methods, and normal wear, without affecting the feel, drape, appearance or breathability of the substrate material. The present method uses a high-power, continuously operating plasma that is 104 times more powerful than the prior art plasma sources utilized in the textile industry, and produces a durable finish with between 0.5 and 2 s of plasma exposure. This is sufficiently rapid to meet commercial fabric processing throughput, and repeated cleaning of the electrodes is not required.
    • 描述了赋予纤维材料的等离子体整理的装置和方法,包括纸和针织,机织和非织造纤维基材,从而赋予所需的特性。 该方法包括在大气压下将包含至少一种碳氟单体的单体与化学添加剂按需要沉积到纸或针织,机织或非编织基材上; 将单体在纤维材料的单个表面上暴露于惰性气体,大气压等离子体,从而引起单体物质的聚合; 并且使用多个顺序沉积和等离子体放电步骤重复该顺序,以产生具有耐水性的洗涤方法和干洗方法和正常磨损的耐磨性的层压表面,而不会影响鞋底的手感,悬垂性,外观或透气性 基材。 本发明的方法使用比在纺织工业中使用的现有技术的等离子体源强大10倍以上的大功率,连续工作的等离子体,并产生0.5秒和2秒之间的耐久光洁度 等离子体暴露 这足以快速满足商业织物加工产量,并且不需要反复清洁电极。
    • 6. 发明授权
    • Methods and apparatus for contamination control in plasma processing
    • 等离子体处理污染控制的方法和装置
    • US5387777A
    • 1995-02-07
    • US903644
    • 1992-06-24
    • Reid S. BennettAlbert R. EllingboeGeorge G. GiffordKurt L. HallerJohn S. McKillopGary S. SelwynJyothi Singh
    • Reid S. BennettAlbert R. EllingboeGeorge G. GiffordKurt L. HallerJohn S. McKillopGary S. SelwynJyothi Singh
    • C23F4/00C23C16/44C23C16/515H01J37/32H01L21/302B23K10/00B05D3/06B44C1/22
    • H01J37/32862C23C16/44C23C16/4401C23C16/515H01J2237/022Y10S156/916
    • Contamination levels in plasma processes are reduced during plasma processing, by prevention of formation of particles, by preventing entry of particles externally introduced or by removing particles spontaneously formed from chemical and/or mechanical sources. Some techniques for prevention of formation of particles include interruption of the plasma by pulsing the source of plasma energy periodically, or application of energy to provide mechanical agitation such as mechanical shockwaves, acoustic stress, ultrasonic stress, vibrational stress, thermal stress, and pressure stress. Following a period of applied stress, a tool is pumped out (if a plasma is used, the glow is first discontinued), vented, opened and flaked or particulate material is cleaned from the lower electrode and other surfaces. A burst of filtered air or nitrogen, or a vacuum cleaner is used for removal of deposition debris while the vented tool is open. Following this procedure, the tool is then be used for product runs. Alternatively, improvement of semiconductor process yields can be achieved by addition of reagents to getter chemical precursors of contamination particulates and by filtration of particulates from feedgas before plasma processing. The efficiency and endpoint for the applied stress are determined, by laser light scattering, using a pulsed or continuous laser source, e.g. a HeNe laser.
    • 等离子体处理中的污染水平通过防止颗粒的形成,通过防止外部引入的颗粒进入或通过除去由化学和/或机械源自发形成的颗粒而减少等离子体处理中的污染水平。 用于防止颗粒形成的一些技术包括通过周期性地脉冲等离子体能量源或者施加能量以提供诸如机械冲击波,声应力,超声应力,振动应力,热应力和压力应力之类的机械搅拌来中断等离子体 。 经过一段时间的施加应力,泵出一个工具(如果使用等离子体,则首先停止发光),从下部电极和其他表面清除通风,打开和剥落或颗粒物质。 过滤的空气或氮气的爆裂或真空吸尘器用于在通风工具打开时去除沉积物。 按照此过程,然后将该工具用于产品运行。 或者,半导体工艺产量的改善可以通过添加试剂来吸收污染物颗粒的化学前体并且在等离子体处理之前通过过滤来自原料气的颗粒来实现。 通过激光散射确定施加的应力的效率和终点,使用脉冲或连续的激光源,例如, HeNe激光。
    • 7. 发明授权
    • Plasma amplified photoelectron process endpoint detection apparatus
    • 等离子体放大光电子进程端点检测装置
    • US4846920A
    • 1989-07-11
    • US130573
    • 1987-12-09
    • John H. KellerGary S. SelwynJyothi Singh
    • John H. KellerGary S. SelwynJyothi Singh
    • H01L21/302H01J37/32H01L21/3065
    • H01J37/32935
    • A plasma processing apparatus and process endpoint detection method including a plasma chamber for processing an item that has a first portion of a first material and a second portion of a second material, with the first and second materials having different work functions, and a structure for generating a plasma in the plasma chamber, with the plasma generating structure including at least a pair of RF-power electrodes with one of them being excited by an RF excitation frequency. The apparatus further includes a structure for generating and ejecting electrons from the second material only when the second material is exposed to the plasma, and a structure for increasing the energies of these generated electrons and accelerating these electrons into the etching plasma with sufficient energy to generate secondary electrons in the plasma. The apparatus further includes a structure for receiving a plasma discharge voltage signal, a structure for filtering the discharge electrical voltage signal to remove the RF excitation frequency and any DC components therein, and a structure for amplifying the natural frequencies of excitation and decay of the plasma discharge voltage perturbation signal, to thereby detect the processing endpoint.In a preferred embodiment, the electron energy increasing and accelerating structure includes a structure for generating an electrode voltage sheath, and a structure for generating the electrons within this voltage sheath to thereby accelerate the electrons into the plasma. The electron generating structure includes a structure for directing a beam of photons in a selected energy range onto the item to be processed, which energy range is not sufficient to eject photoelectrons from the first material, but is high enough to generate photoelectrons from areas of exposed second material.
    • 9. 发明申请
    • Hollow-Cavity, Gas-Filled Cookware
    • 空心腔,燃气炊具
    • US20130255506A1
    • 2013-10-03
    • US13433054
    • 2012-03-28
    • Gary S. Selwyn
    • Gary S. Selwyn
    • A21B3/13
    • A47J27/002
    • A cooking vessel includes an upper element that defines a cook surface and a lower shell that defines a heat surface for contact with a heat source during heating. The upper element and the lower shell are joined together such that the cook surface and the heat surface are retained in a fixed spatial relationship with each other and a gas-filled cavity is defined between the heat surface of the lower shell and the cook surface of the upper element. An optional temperature sensor may be placed in contact with the gas for cooking temperature readout. Heat is transferred from the heat surface to the cook surface through the gas contained in the gas-filled cavity. Improved heat distribution is accomplished by static and dynamic means of enhancing gas convection. This promotes efficient and even heat distribution at low weight.
    • 烹饪容器包括限定烹饪表面的上部元件和限定用于在加热期间与热源接触的热表面的下部壳体。 上部元件和下部壳体连接在一起,使得烹调表面和加热表面彼此保持固定的空间关系,并且在下壳体的热表面和烹调表面之间限定充气腔体 上部元素。 可以将可选的温度传感器放置成与气体接触以进行烹饪温度读出。 热量通过包含在充气腔中的气体从热表面转移到烹饪表面。 改进的热分布是通过增强气体对流的静态和动态手段来实现的。 这促进了低重量下的高效均匀的热分布。