会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Method of manufacturing a thin-film transistor with reinforced drain and
source electrodes
    • 制造具有加强漏极和源极的薄膜晶体管的方法
    • US6050827A
    • 2000-04-18
    • US4661
    • 1993-01-14
    • Sadatoshi TakechiTadanori HishidaFumiaki Funada
    • Sadatoshi TakechiTadanori HishidaFumiaki Funada
    • H01L29/78G02F1/136G02F1/1368H01L21/336H01L27/12H01L29/40H01L29/417H01L29/45H01L29/49H01L29/786
    • H01L29/66765H01L29/41733H01L29/458H01L29/4908H01L29/78681Y10S438/944
    • A thin film transistor where source and drain electrodes are film laminates including at least two layers. A first layer film of the laminate, which is formed to a thickness of 10 to 700 .ANG. is in ohmic contact with underlying semiconductor film. A second layer film, formed on the first layer film has a thickness of more than about 2000 .ANG. and is a material having a sufficient adhesion strength even when formed at a temperature which is less than the temperature corresponding to the materials vapor pressure. Further, the materials used for the source and drain electrodes can be formed into thin films by ordinary sputtering or vacuum deposition techniques, low in cost, and readily available. A thin film transistor according to the present invention is formed on a substrate by the steps of: forming a gate electrode on the substrate; oxidizing the gate electrode to form a gate insulating film, the gate electrode and the gate insulating film forming a step; forming a thin film semiconductor on the gate insulating film; forming a first layer film portion of a source and drain electrode film laminate on the thin film semiconductor and in ohmic contact with the thin film semiconductor; and forming a second layer film portion of the source and drain electrode film laminate, the second layer film being an adhesion layer, convering the first layer film, and having a sufficient thickness to provide a continuous film across the step.
    • 一种薄膜晶体管,其中源极和漏极是包括至少两个层的薄膜叠层。 形成为10至700厚度的层压体的第一层膜与下面的半导体膜欧姆接触。 形成在第一层膜上的第二层膜具有大于约2000的厚度,并且即使在低于对应于材料蒸气压的温度的温度下形成时,也具有足够的粘合强度的材料。 此外,用于源电极和漏电极的材料可以通过普通溅射或真空沉积技术形成为薄膜,成本低且易于获得。 根据本发明的薄膜晶体管通过以下步骤形成在衬底上:在衬底上形成栅电极; 氧化栅电极以形成栅极绝缘膜,栅电极和栅绝缘膜形成步骤; 在栅极绝缘膜上形成薄膜半导体; 在所述薄膜半导体上形成源极和漏极电极膜层叠体的第一层膜部分,并与所述薄膜半导体欧姆接触; 以及形成所述源极和漏极电极膜层压体的第二层膜部分,所述第二层膜是粘合层,使所述第一层膜会聚,并且具有足够的厚度以在所述台阶上提供连续的膜。
    • 9. 发明授权
    • Field effect mode liquid crystal display
    • 场效应模式液晶显示
    • US4521080A
    • 1985-06-04
    • US432660
    • 1982-10-18
    • Fumiaki FunadaKeiichiro Shimizu
    • Fumiaki FunadaKeiichiro Shimizu
    • G09F9/00G02F1/1337G02F1/137G02F1/139G09F9/35G02F1/13
    • G02F1/13378G02F1/133784
    • A nematic-phase liquid crystal material is sandwiched between two opposing parallel plates at least one of which is transparent. The two parallel plates are respectively coated with transparent electrode films having parallel micro-groove structures at the respective inner surfaces in contact with the nematic-phase liquid crystal material established by unidirectional rubbing. In particular, an additional or second micro-groove structure is further provided for said fist-named micro-groove structure which has an asymmetric or anisotropic profile along the longitudinal axes of the respective micro-grooves within the first micro-groove structure, preferably of a substantially saw-tooth profile. This combination results in a surface anisotropy in solid geometry rather than in plane geometry in the interfacial surfaces. The surface anisotropies in the two interfacial surfaces should be established in a complemental relationship in a manner to attain uniform aligment of liquid crystal molecules and hence to reduce free energy due to the liquid crystal molecules, therefore, non-uniformity of display is alleviated.
    • 向列相液晶材料夹在两个相对的平行板中,其中至少一个是透明的。 两个平行板分别在与通过单向摩擦建立的向列相液晶材料接触的相应内表面上分别涂覆具有平行微槽结构的透明电极膜。 特别地,对于所述第一微沟槽结构进一步提供了附加或第二微槽结构,其具有沿着第一微槽结构内的相应微槽的纵向轴线的不对称或各向异性轮廓,优选为 基本上是锯齿型材。 这种组合导致实心几何形状的表面各向异性,而不是界面表面的平面几何形状。 应以互补关系建立两个界面表面的各向异性,以获得液晶分子的均匀分配,从而降低由于液晶分子引起的自由能,因此显示的不均匀性得到缓解。