会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • DRAM capacitor including Cu plug and Ta barrier and method of forming
    • 包括Cu插头和Ta阻挡层的DRAM电容器及其形成方法
    • US06168991A
    • 2001-01-02
    • US09340062
    • 1999-06-25
    • Seungmoo ChoiSailesh M. MerchantPradip K. Roy
    • Seungmoo ChoiSailesh M. MerchantPradip K. Roy
    • H01L218242
    • H01L28/60H01L21/28568H01L21/76895H01L27/10852H01L27/10888H01L28/55H01L28/75
    • A capacitor for a DRAM cell comprises a first electrode layer, a second electrode layer, and a dielectric film. The capacitor is disposed in a first opening defined in a second dielectric layer and overlaying a first plug through a first dielectric layer. The first plug is electrically connected to a transistor. The first electrode layer is electrically connected to the first plug. The second electrode layer can act as a barrier between a second plug exposed by a second opening and the second opening. The first and second electrode layer can be formed from Ta and TaN, and the dielectric film can be formed from tantalum oxide. A plug layer electrically connected to the second electrode layer can also be included. The plug layer can be formed from copper. A method of forming the DRAM capacitor is also disclosed.
    • 用于DRAM单元的电容器包括第一电极层,第二电极层和电介质膜。 电容器设置在限定在第二电介质层中的第一开口中,并且通过第一介电层覆盖第一插塞。 第一插头电连接到晶体管。 第一电极层电连接到第一插头。 第二电极层可以用作由第二开口暴露的第二插头和第二开口之间的屏障。 第一和第二电极层可以由Ta和TaN形成,并且电介质膜可以由氧化钽形成。 电连接到第二电极层的插塞层也可以包括在内。 插塞层可以由铜形成。 还公开了形成DRAM电容器的方法。
    • 3. 发明授权
    • PMOS device having a layered silicon gate for improved silicide integrity and enhanced boron penetration resistance
    • PMOS器件具有用于改善硅化物完整性和增强的硼渗透电阻的层状硅栅极
    • US06313021B1
    • 2001-11-06
    • US09416491
    • 1999-10-12
    • Sailesh M. MerchantJoseph R. RadosevichPradip K. Roy
    • Sailesh M. MerchantJoseph R. RadosevichPradip K. Roy
    • H01L213205
    • H01L21/28035H01L21/28044H01L21/28061H01L21/823835H01L21/823842H01L29/4933H01L29/4941
    • The present invention provides a process for forming a sub-micron p-type metal oxide semiconductor (PMOS) structure on a semiconductor substrate. The process includes forming a gate oxide on the semiconductor substrate, forming a gate layer on the gate oxide by depositing a first gate layer on the gate oxide at a first deposition rate and depositing a second gate layer on the first layer at a second deposition rate to provide an improved stress accommodation within the gate structure. The process further includes forming a silicide dopant barrier on the gate. Due to the presence of the improved stress accommodation in the gate, the integrity of the silicide dopant barrier is substantially enhanced. This increased silicide integrity prevents significant damage to the silicide dopant barrier layer during subsequent fabrication processes. As such, the dopant barrier is able to provide the intended degree of resistance to dopant penetration, for example boron, during the formation of source and drain regions adjacent the gate structure.
    • 本发明提供了一种在半导体衬底上形成亚微米p型金属氧化物半导体(PMOS)结构的方法。 该工艺包括在半导体衬底上形成栅极氧化物,通过以第一沉积速率沉积栅极氧化物上的第一栅极层,以栅极氧化物形成栅极层,并以第二沉积速率在第一层上沉积第二栅极层 以在门结构内提供改进的应力调节。 该工艺还包括在栅极上形成硅化物掺杂剂阻挡层。 由于在栅极中存在改善的应力调节,硅化物掺杂剂势垒的完整性显着增强。 这种增加的硅化物完整性防止在随后的制造工艺期间对硅化物掺杂剂阻挡层的显着损坏。 因此,在形成与栅极结构相邻的源极和漏极区域期间,掺杂物势垒能够提供对掺杂剂穿透(例如硼)的预期程度的阻抗。
    • 5. 发明授权
    • Method of forming metal oxide metal capacitors using multi-step rapid thermal process and a device formed thereby
    • 使用多步快速热处理形成金属氧化物金属电容器的方法和由此形成的器件
    • US06323078B1
    • 2001-11-27
    • US09418106
    • 1999-10-14
    • Siddhartha BhowmikSailesh M. MerchantPradip K. RoySidhartha Sen
    • Siddhartha BhowmikSailesh M. MerchantPradip K. RoySidhartha Sen
    • H01L218234
    • H01L28/40
    • The present invention provides a method of forming a metal oxide metal (MOM) capacitor on a substrate, such as a silicon substrate, of a semiconductor wafer in a rapid thermal process (RTP) machine. The MOM capacitor is fabricated by forming a metal layer on the semiconductor substrate. The metal layer is then subjected to a first rapid thermal process in a substantially inert but nitrogen-free atmosphere that consumes a portion of the metal layer to form a first metal electrode layer and a silicide layer between the first metal electrode and the semiconductor substrate. The semiconductor wafer is then subjected to a second rapid thermal process. During this process, the remaining portion of the metal layer is oxidized to form a metal oxide on the first metal electrode, which serves as the dielectric layer of the MOM capacitor. Following the formation of the dielectric layer, a second metal electrode layer is then conventionally formed on the metal oxide, which completes the formation of the MOM capacitor. Preferably, the first electrode layer and the metal oxide layer are formed in a single RTP machine.
    • 本发明提供了一种在快速热处理(RTP)机器中在半导体晶片的衬底(例如硅衬底)上形成金属氧化物金属(MOM)电容器的方法。 通过在半导体衬底上形成金属层来制造MOM电容器。 然后在基本惰性但无氮的气氛中对金属层进行第一快速热处理,其消耗金属层的一部分以在第一金属电极和半导体衬底之间形成第一金属电极层和硅化物层。 然后对半导体晶片进行第二快速热处理。 在该过程中,金属层的剩余部分被氧化,在作为MOM电容器的电介质层的第一金属电极上形成金属氧化物。 在形成电介质层之后,通常在金属氧化物上形成第二金属电极层,从而完成MOM电容器的形成。 优选地,第一电极层和金属氧化物层在单个RTP机器中形成。
    • 10. 发明授权
    • Multi-layered metal silicide resistor for Si Ic's
    • Si Ic的多层金属硅化物电阻
    • US06359339B1
    • 2002-03-19
    • US09480224
    • 2000-01-10
    • Richard W. GregorIsik C. KizilyalliSailesh M. MerchantJaseph R. RadosevichPradip K. Roy
    • Richard W. GregorIsik C. KizilyalliSailesh M. MerchantJaseph R. RadosevichPradip K. Roy
    • H01L2348
    • H01L28/24H01L27/0802
    • The present invention provides a unique a resistor formed on a semiconductor substrate. The resistor preferably comprises a first resistor layer that includes a first metal silicide, such as tungsten silicide, and nitrogen and that is formed on the substrate. The first layer has a first thickness and a concentration of nitrogen incorporated therein. The nitrogen concentration may be varied to obtain a desired resistive value of the resistor. Thus, depending on the concentration of nitrogen, a wide range of resistive values may be achieved. The resistor further comprises a second resistor layer with a second thickness that includes a second metal silicide and that is formed on the first resistor layer. Thus, the present invention provides a metal silicide-based resistor having nitrogen incorporated therein which allows the resistance of the resistor to be tailored to specific electrical applications. Yet at the same time, the resistor is far less susceptible to temperature and voltage variation than conventional diffused resistors and, thereby, provides a more precise resistor.
    • 本发明提供了形成在半导体衬底上的独特的电阻器。 电阻器优选地包括第一电阻层,该第一电阻层包括第一金属硅化物,例如硅化钨和氮,并且形成在衬底上。 第一层具有掺入其中的第一厚度和氮浓度。 可以改变氮浓度以获得电阻器的期望电阻值。 因此,取决于氮的浓度,可以实现宽范围的电阻值。 电阻器还包括具有第二厚度的第二电阻层,该第二电阻层包括第二金属硅化物,并形成在第一电阻层上。 因此,本发明提供一种其中结合有氮化物的金属硅化物基电阻器,其允许将电阻器的电阻定制为特定的电气应用。 然而与此同时,电阻器比常规扩散电阻器更不易受温度和电压变化的影响,从而提供更精确的电阻器。