会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Integrated formation of LDD and non-LDD semiconductor devices
    • LDD和非LDD半导体器件的集成形成
    • US06309936B1
    • 2001-10-30
    • US09163965
    • 1998-09-30
    • Mark I. GardnerRobert PaizThomas E. Spikes, Jr.
    • Mark I. GardnerRobert PaizThomas E. Spikes, Jr.
    • H01L21336
    • H01L21/823418H01L21/823468
    • A method of forming a semiconductor device includes forming a first gate electrode over a substrate and then forming a spacer on at least one sidewall of the first gate electrode. A second gate electrode is formed over the substrate after forming the spacer. A first dopant is implanted into the substrate to form a first heavily doped active region adjacent to the spacer and spaced from the first gate electrode and a second heavily doped active region adjacent to the second gate electrode. The spacer is then removed and a second dopant is implanted into the substrate to form a lightly doped active region adjacent to the first gate electrode. In some instances, gate dielectrics for the first and second gate electrodes are formed using different materials and/or having different thicknesses.
    • 形成半导体器件的方法包括在衬底上形成第一栅电极,然后在第一栅电极的至少一个侧壁上形成间隔物。 在形成间隔物之后,在衬底上形成第二栅电极。 将第一掺杂剂注入到衬底中以形成与间隔物相邻的第一重掺杂有源区,并与第一栅极间隔开,并与第二栅电极相邻的第二重掺杂有源区。 然后去除间隔物,并将第二掺杂剂注入到衬底中以形成与第一栅电极相邻的轻掺杂有源区。 在一些情况下,用于第一和第二栅电极的栅极电介质是使用不同的材料和/或具有不同的厚度来形成的。
    • 3. 发明授权
    • Small gate electrode MOSFET
    • 小栅极电极MOSFET
    • US5942787A
    • 1999-08-24
    • US751582
    • 1996-11-18
    • Mark I. GardnerRobert PaizThomas E. Spikes, Jr.
    • Mark I. GardnerRobert PaizThomas E. Spikes, Jr.
    • H01L21/033H01L21/28H01L21/8234H01L21/8232
    • H01L21/28132H01L21/0337H01L21/0338H01L21/823437Y10S438/926Y10S438/947
    • A method of lithographically fabricating small line width features in a device in accordance with a desired pattern, the small line width features being smaller than that capable of a lithographic process alone, is disclosed. A first layer of material is provided upon a substrate, the first layer including that in which the small line width features are to be made. A lithographically patterned layer is then provided upon the first layer in accordance with a second pattern defined in conjunction with the desired pattern. The patterned layer includes a second material selected to be compatible with the material of the first layer. A conformal layer is then deposited upon the patterned layer, the conformal layer including a third material selected to be compatible in conjunction with the first material and with the second material. Sidewall spacers are formed in the conformal layer proximate side edges of the patterned layer, the sidewall spacers having a desired line width dimension of the small features to be fabricated. The patterned layer is thereafter selectively removed. The first layer is then directionally etched with a selective etch, using the sidewall spacers to prevent the etching of the first layer in accordance with the desired pattern.
    • 公开了一种根据期望的图案在装置中光刻地制造小线宽特征的方法,小线宽特征小于仅能够进行光刻工艺的小线宽特征。 第一层材料设置在基板上,第一层包括将要制造小线宽特征的第一层。 然后根据与期望图案一起限定的第二图案在第一层上提供光刻图案层。 图案化层包括选择为与第一层的材料相容的第二材料。 然后将保形层沉积在图案化层上,保形层包括选择为与第一材料和第二材料相结合的第三材料。 在图案化层的近侧边缘的共形层中形成侧壁间隔物,侧壁间隔物具有要制造的小特征的期望的线宽度尺寸。 此后,图案化层被选择性地去除。 然后用选择性蚀刻对第一层进行定向蚀刻,使用侧壁间隔物来防止根据所需图案蚀刻第一层。
    • 5. 发明授权
    • High density trench fill due to new spacer fill method including isotropically etching silicon nitride spacers
    • 由于新的间隔填充方法包括各向异性蚀刻氮化硅间隔物,高密度沟槽填充
    • US06194283B1
    • 2001-02-27
    • US08959587
    • 1997-10-29
    • Mark I. GardnerRobert PaizThomas E. Spikes, Jr.
    • Mark I. GardnerRobert PaizThomas E. Spikes, Jr.
    • H01L2176
    • H01L21/76224
    • A method for forming an isolation trench in a semiconductor substrate that is substantially free of voids. The method includes forming a dielectric masking layer above a semiconductor substrate. An opening is preferably formed through the masking layer and partially into the semiconductor substrate forming a shallow trench within the semiconductor substrate. Optionally, thermal oxidation of the trench may be performed to form an oxide layer within the trench. A spacer layer is preferably deposited across the exposed surface of the topography. The spacer layer is preferably etched to form spacers directly adjacent to opposed sidewall surfaces of the trench. The isolation trench may then be filled with an isolation dielectric. The presence of the spacers within the isolation trench preferably causes the lower portions of the trench to fill up faster than the upper portions. In this manner the trench may be filled without the formation of voids.
    • 一种在半导体衬底中形成基本上没有空隙的隔离沟槽的方法。 该方法包括在半导体衬底上形成电介质掩模层。 优选地,通过掩模层形成开口,并且部分地形成在半导体衬底内形成浅沟槽的半导体衬底中。 可选地,可以进行沟槽的热氧化以在沟槽内形成氧化物层。 间隔层优选沉积在地形的暴露表面上。 优选蚀刻间隔层以形成与沟槽的相对侧壁表面直接相邻的间隔物。 然后可以用隔离电介质填充隔离沟槽。 间隔物在隔离沟槽内的存在优选地使得沟槽的下部比上部更快地填充。 以这种方式,可以填充沟槽而不形成空隙。
    • 7. 发明授权
    • Ultra-thin gate oxide formation using an N2O plasma
    • 使用N2O等离子体的超薄栅极氧化物形成
    • US06258730B1
    • 2001-07-10
    • US09246462
    • 1999-02-09
    • Sey-Ping SunMark I. GardnerShengnian Song
    • Sey-Ping SunMark I. GardnerShengnian Song
    • H01L2131
    • H01L21/28185H01L21/28194H01L21/28211H01L21/31662
    • A fabrication process for semiconductor devices is disclosed for forming ultra-thin gate oxides, whereby a silicon substrate is subjected to an N2O plasma to form the ultra-thin gate oxide. According to one embodiment, the silicon substrate is heated in a deposition chamber and the N2O plasma is created by applying RF power to a showerhead from which the N2O is dispensed. By reacting an N2O plasma directly with the silicon substrate it is possible to achieve gate oxides with thicknesses less than 20 Å and relative uniformities of less than 1% standard deviation. The oxide growth rate resulting from the presently disclosed N2O plasma treatment is much slower than other known oxide formation techniques. One advantage of the disclosed N2O plasma treatment over thermal oxidation lies in the predictability of oxide growth thickness resulting from reaction with N2O plasma versus the strong variation in oxide formation rates exhibited by thermal oxidation. Following gate oxide formation, a high temperature anneal may be performed, preferably in an RTA apparatus. By combining the N2O plasma treatment with an RTA process, the disclosed method is believed to offer a controllable and reproducible method for fabricating highly uniform, ultra-thin gate oxides, having low trapping state densities.
    • 公开了用于形成超薄栅极氧化物的半导体器件的制造工艺,由此使硅衬底经受N 2 O等离子体以形成超薄栅极氧化物。 根据一个实施例,在沉积室中加热硅衬底,并且通过将RF功率施加到分配N2O的喷头来产生N 2 O等离子体。 通过使N2O等离子体直接与硅衬底反应,可以实现厚度小于20的栅极氧化物和小于1%标准偏差的相对均匀性。 由本发明的N2O等离子体处理产生的氧化物生长速度比其它已知的氧化物形成技术慢得多。 所公开的N2O等离子体处理对热氧化的一个优点在于与N2O等离子体反应产生的氧化物生长厚度与热氧化显示的氧化物形成速率的强烈变化的可预测性。 在形成栅极氧化物之后,可以优选在RTA装置中进行高温退火。 通过将N2O等离子体处理与RTA工艺结合,所公开的方法被认为是提供具有低陷阱状态密度的制造高度均匀的超薄栅极氧化物的可控和可再现的方法。
    • 9. 发明授权
    • In-situ stack for high volume production of isolation regions
    • 原位堆叠用于大批量生产隔离区
    • US06383874B1
    • 2002-05-07
    • US09800862
    • 2001-03-07
    • Sey-Ping SunMark I. GardnerRobert W. Anderson
    • Sey-Ping SunMark I. GardnerRobert W. Anderson
    • H01L21336
    • H01L21/76224
    • A device stack for fabrication of an isolation structure and methods of fabricating the same are provided. In one aspect, a method of processing a substrate is provided that includes exposing the substrate to a plasma ambient containing nitrogen and oxygen to form a nitrogen containing interface. An oxide film is formed on the nitrogen containing interface and a silicon rich nitride film is formed on the oxide film. The silicon rich nitride film is exposed to a plasma ambient containing oxygen to convert an upper portion of the silicon rich nitride film to silicon oxynitride. The optical properties of the nitride film are enhanced so that UV lithographic patterning of etch masking is improved.
    • 提供了用于制造隔离结构的器件堆叠及其制造方法。 在一个方面,提供了一种处理衬底的方法,其包括将衬底暴露于含有氮和氧的等离子体环境中以形成含氮界面。 在含氮界面上形成氧化膜,在氧化物膜上形成富含氮的氮化物膜。 富硅氮化物膜暴露于含有氧的等离子体环境,以将富硅氮化物膜的上部转化为氮氧化硅。 氮化膜的光学特性得到增强,从而提高了蚀刻掩模的UV光刻图案。