会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明申请
    • Directly fabricated nanoparticles for Raman scattering
    • 用于拉曼散射的直接纳米颗粒
    • US20110250464A1
    • 2011-10-13
    • US13066248
    • 2011-04-08
    • Robert J. WilsonJung-Sub WiShan X. WangEdward S. BarnardMark L. BrongersmaMary Tang
    • Robert J. WilsonJung-Sub WiShan X. WangEdward S. BarnardMark L. BrongersmaMary Tang
    • B22F1/00
    • B22F1/0018B22F7/08B22F2001/0037B82Y30/00
    • A Raman-active nanoparticle is provided that includes a dish-shape plasmonically active metal base, and a plasmonically active metal pillar disposed on the plasmonically active metal base, where the plasmonically active metal pillar is disposed within the dish-shape plasmonically active metal base and normal to a bottom of the dish-shape plasmonically active metal base, where a circular gap is disposed between the dish-shape plasmonically active metal pillar and inner walls of the dish-shape plasmonically active metal base. In one embodiment a Raman-active nanoparticle is provided that includes a dish-shape base having a dielectric material, an electrically conductive layer disposed on the inner surface of the dish-shape base, and an electrically conductive pillar disposed on the conductive layer, and within the dish-shape and perpendicular to a bottom of the dish-shape base, where a circular gap is disposed between the conductive pillar and inner walls of the dish-shape base.
    • 提供了一种拉曼活性纳米颗粒,其包括盘状等离子体活性金属碱和设置在等离子体活性金属基体上的等离子体活性金属柱,其中等离子体活性金属柱设置在盘状等离子体活性金属基质内, 垂直于盘形等离子体活性金属基底的底部,其中盘形等离子体活性金属柱和盘形等离子体活性金属基底的内壁之间设置有圆形间隙。 在一个实施方案中,提供了拉曼活性纳米颗粒,其包括具有介电材料的盘形基底,设置在盘形基底的内表面上的导电层和设置在导电层上的导电柱,以及 在碟形基底中的垂直于盘形基底的底部,其中圆形间隙设置在盘形基底的导电柱和内壁之间。
    • 6. 发明授权
    • Directly fabricated nanoparticles for raman scattering
    • 用于拉曼散射的直接制造的纳米颗粒
    • US08568878B2
    • 2013-10-29
    • US13066248
    • 2011-04-08
    • Robert J. WilsonJung-Sub WiShan X. WangEdward S. BarnardMark L. BrongersmaMary Tang
    • Robert J. WilsonJung-Sub WiShan X. WangEdward S. BarnardMark L. BrongersmaMary Tang
    • B22F1/00G01N21/65
    • B22F1/0018B22F7/08B22F2001/0037B82Y30/00
    • A Raman-active nanoparticle is provided that includes a dish-shape plasmonically active metal base, and a plasmonically active metal pillar disposed on the plasmonically active metal base, where the plasmonically active metal pillar is disposed within the dish-shape plasmonically active metal base and normal to a bottom of the dish-shape plasmonically active metal base, where a circular gap is disposed between the dish-shape plasmonically active metal pillar and inner walls of the dish-shape plasmonically active metal base. In one embodiment a Raman-active nanoparticle is provided that includes a dish-shape base having a dielectric material, an electrically conductive layer disposed on the inner surface of the dish-shape base, and an electrically conductive pillar disposed on the conductive layer, and within the dish-shape and perpendicular to a bottom of the dish-shape base, where a circular gap is disposed between the conductive pillar and inner walls of the dish-shape base.
    • 提供了一种拉曼活性纳米颗粒,其包括盘状等离子体活性金属碱和设置在等离子体活性金属基体上的等离子体活性金属柱,其中等离子体活性金属柱设置在盘状等离子体活性金属基质内, 垂直于盘形等离子体活性金属基底的底部,其中盘形等离子体活性金属柱和盘形等离子体活性金属基底的内壁之间设置有圆形间隙。 在一个实施方案中,提供了拉曼活性纳米颗粒,其包括具有介电材料的盘形基底,设置在盘形基底的内表面上的导电层和设置在导电层上的导电柱,以及 在碟形基底中的垂直于盘形基底的底部,其中圆形间隙设置在盘形基底的导电柱和内壁之间。
    • 7. 发明授权
    • Dimension measurement approach for metal-material
    • 金属材料尺寸测量方法
    • US07088449B1
    • 2006-08-08
    • US10376116
    • 2003-02-28
    • Mark L. Brongersma
    • Mark L. Brongersma
    • G01N21/55
    • G01B11/0616G01N21/553G01N21/554
    • Dimensional parameters of metal-containing structures such as films, interconnects, wires and stripes, and nanoparticles are detected using an approach involving plasmon-excitation and one or more metal-constituency characteristics of the metal-containing structures. According to an example embodiment of the present invention, plasmon-exciting light is used to excite plasmons in a structure, the plasmon excitation being responsive to the metal constituency. A characteristic of light reflected from the structure is then used to detect dimensional parameters of the structure. In one implementation, a characteristic of the reflected light that is related to the state of plasmon excitation in the structure is used to detect the dimensional parameters. In another implementation, the angle of incidence of the plasmon-exciting light is used in connection with an intensity-related characteristic of light reflected from structure to detect one or more dimensions of the structure. In still another implementation, the intensity of different wavelengths of the reflected light is used to determine one or more dimensions of the structure. With these approaches, the dimensions of a variety of structures such as metal films, interconnects, wires, and stripes are determined.
    • 使用包含等离子体激发和含金属结构的一个或多个金属选区特性的方法来检测含金属结构如膜,互连线,导线和条纹以及纳米颗粒的尺寸参数。 根据本发明的示例性实施例,等离激元激发光用于激发结构中的等离子体激元,等离子体激发响应于金属选区。 然后使用从结构反射的光的特性来检测结构的尺寸参数。 在一个实现中,使用与结构中的等离子体激元激发状态相关的反射光的特性来检测尺寸参数。 在另一个实施方案中,等离激元激发光的入射角与结构反射的光的强度相关特性结合使用,以检测结构的一个或多个维度。 在又一实施方案中,反射光的不同波长的强度用于确定结构的一个或多个维度。 利用这些方法,确定各种结构的尺寸,例如金属膜,互连件,导线和条纹。