会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Directly fabricated nanoparticles for raman scattering
    • 用于拉曼散射的直接制造的纳米颗粒
    • US08568878B2
    • 2013-10-29
    • US13066248
    • 2011-04-08
    • Robert J. WilsonJung-Sub WiShan X. WangEdward S. BarnardMark L. BrongersmaMary Tang
    • Robert J. WilsonJung-Sub WiShan X. WangEdward S. BarnardMark L. BrongersmaMary Tang
    • B22F1/00G01N21/65
    • B22F1/0018B22F7/08B22F2001/0037B82Y30/00
    • A Raman-active nanoparticle is provided that includes a dish-shape plasmonically active metal base, and a plasmonically active metal pillar disposed on the plasmonically active metal base, where the plasmonically active metal pillar is disposed within the dish-shape plasmonically active metal base and normal to a bottom of the dish-shape plasmonically active metal base, where a circular gap is disposed between the dish-shape plasmonically active metal pillar and inner walls of the dish-shape plasmonically active metal base. In one embodiment a Raman-active nanoparticle is provided that includes a dish-shape base having a dielectric material, an electrically conductive layer disposed on the inner surface of the dish-shape base, and an electrically conductive pillar disposed on the conductive layer, and within the dish-shape and perpendicular to a bottom of the dish-shape base, where a circular gap is disposed between the conductive pillar and inner walls of the dish-shape base.
    • 提供了一种拉曼活性纳米颗粒,其包括盘状等离子体活性金属碱和设置在等离子体活性金属基体上的等离子体活性金属柱,其中等离子体活性金属柱设置在盘状等离子体活性金属基质内, 垂直于盘形等离子体活性金属基底的底部,其中盘形等离子体活性金属柱和盘形等离子体活性金属基底的内壁之间设置有圆形间隙。 在一个实施方案中,提供了拉曼活性纳米颗粒,其包括具有介电材料的盘形基底,设置在盘形基底的内表面上的导电层和设置在导电层上的导电柱,以及 在碟形基底中的垂直于盘形基底的底部,其中圆形间隙设置在盘形基底的导电柱和内壁之间。
    • 2. 发明申请
    • Directly fabricated nanoparticles for Raman scattering
    • 用于拉曼散射的直接纳米颗粒
    • US20110250464A1
    • 2011-10-13
    • US13066248
    • 2011-04-08
    • Robert J. WilsonJung-Sub WiShan X. WangEdward S. BarnardMark L. BrongersmaMary Tang
    • Robert J. WilsonJung-Sub WiShan X. WangEdward S. BarnardMark L. BrongersmaMary Tang
    • B22F1/00
    • B22F1/0018B22F7/08B22F2001/0037B82Y30/00
    • A Raman-active nanoparticle is provided that includes a dish-shape plasmonically active metal base, and a plasmonically active metal pillar disposed on the plasmonically active metal base, where the plasmonically active metal pillar is disposed within the dish-shape plasmonically active metal base and normal to a bottom of the dish-shape plasmonically active metal base, where a circular gap is disposed between the dish-shape plasmonically active metal pillar and inner walls of the dish-shape plasmonically active metal base. In one embodiment a Raman-active nanoparticle is provided that includes a dish-shape base having a dielectric material, an electrically conductive layer disposed on the inner surface of the dish-shape base, and an electrically conductive pillar disposed on the conductive layer, and within the dish-shape and perpendicular to a bottom of the dish-shape base, where a circular gap is disposed between the conductive pillar and inner walls of the dish-shape base.
    • 提供了一种拉曼活性纳米颗粒,其包括盘状等离子体活性金属碱和设置在等离子体活性金属基体上的等离子体活性金属柱,其中等离子体活性金属柱设置在盘状等离子体活性金属基质内, 垂直于盘形等离子体活性金属基底的底部,其中盘形等离子体活性金属柱和盘形等离子体活性金属基底的内壁之间设置有圆形间隙。 在一个实施方案中,提供了拉曼活性纳米颗粒,其包括具有介电材料的盘形基底,设置在盘形基底的内表面上的导电层和设置在导电层上的导电柱,以及 在碟形基底中的垂直于盘形基底的底部,其中圆形间隙设置在盘形基底的导电柱和内壁之间。
    • 5. 发明授权
    • Dumbbell-like nanoparticles and a process of forming the same
    • 哑铃状纳米颗粒及其形成方法
    • US07766993B2
    • 2010-08-03
    • US11830870
    • 2007-07-31
    • Shouheng SunHeng YuShan X. Wang
    • Shouheng SunHeng YuShan X. Wang
    • B22F1/02
    • C01G1/00B22F1/0022B22F1/0096B22F2999/00B82Y25/00B82Y30/00C01B17/20C01B19/007C01P2002/72C01P2002/84C01P2004/04C01P2004/30C01P2004/64C01P2004/80C01P2006/42C09C3/063H01F1/0054Y10S977/835B22F1/0018
    • Dumbbell-shaped or flower-shaped nanoparticles and a process of forming the same, wherein the process comprises forming a mixture of a nanoparticle with a precursor in a first solvent, wherein the nanoparticle comprises a hydrophobic outer coating; heating the mixture; cooling the mixture to room temperature; modifying the hydrophobic outer coating into a hydrophilic outer coating; precipitating a solid product from the mixture, and dispersing the product in a second solvent. The nanoparticles comprise any of a semiconducting, magnetic, and noble metallic material, wherein the nanoparticles comprise a first portion comprising any of PbSe, PbS, CdSe, CdS, ZnS, Au, Ag, Pd, and Pt, and wherein the precursor comprises any of a cationic, neutral or particulate Au, Ag, Pd, Pt, or transition metal (Fe, Co, Ni) precursors of Fe(CO)5, Co(CO)8, Ni(CO)4 or their analogues. The first and second solvents comprise any of alkanes, arenes, ethers, nitrites, ketones, and chlorinated hydrocarbons.
    • 哑铃形或花形纳米颗粒及其形成方法,其中所述方法包括在第一溶剂中形成纳米颗粒与前体的混合物,其中所述纳米颗粒包含疏水外涂层; 加热混合物; 将混合物冷却至室温; 将疏水性外涂层改性为亲水性外涂层; 从混合物中沉淀出固体产物,并将产物分散在第二溶剂中。 纳米颗粒包括半导体,磁性和贵金属材料中的任何一种,其中纳米颗粒包括包含PbSe,PbS,CdSe,CdS,ZnS,Au,Ag,Pd和Pt中的任何一种的第一部分,并且其中前体包含任何 的Fe(CO)5,Co(CO)8,Ni(CO)4或其类似物的阳离子,中性或微粒Au,Ag,Pd,Pt或过渡金属(Fe,Co,Ni)前体。 第一和第二溶剂包括任何烷烃,芳烃,醚,亚硝酸盐,酮和氯代烃。
    • 6. 发明授权
    • Magnetic sifter
    • 磁选机
    • US07615382B2
    • 2009-11-10
    • US11595818
    • 2006-11-09
    • Shan X. WangNader PourmandRobert L. White
    • Shan X. WangNader PourmandRobert L. White
    • G01N33/553B03C1/30
    • B03C1/0335B03C2201/18B03C2201/22
    • The present invention provides a magnetic sifter that is small in scale, enables three-dimensional flow in a direction normal to the substrate, allows relatively higher capture rates and higher flow rates, and provides a relatively easy method of releasing captured biomolecules. The magnetic sifter includes at least one substrate. Each substrate contains a plurality of slits, each of which extends through the substrate. The sifter also includes a plurality of magnets attached to the bottom surface of the substrate. These magnets are located proximal to the openings of the slits. An electromagnetic source controls the magnitude and direction of magnetic field gradient generated by the magnets. Either one device may be used, or multiple devices may be used in series. In addition, the magnetic sifter may be used in connection with a detection chamber.
    • 本发明提供一种规模小的磁选筛机,使得能够沿垂直于基底的方向进行三维流动,允许相对较高的捕获率和较高的流速,并且提供了一种相对容易的释放捕获的生物分子的方法。 磁选机包括至少一个衬底。 每个基板包含多个狭缝,每个狭缝延伸穿过基板。 筛子还包括附着到基底的底表面的多个磁体。 这些磁体位于缝隙的开口附近。 电磁源控制由磁体产生的磁场梯度的大小和方向。 可以使用一个设备,或者可以串联使用多个设备。 此外,磁选机可以与检测室结合使用。
    • 7. 发明授权
    • Multilayer microfluidic device
    • 多层微流体装置
    • US07419639B2
    • 2008-09-02
    • US11388223
    • 2006-03-22
    • Sebastian J OsterfeldShan X. Wang
    • Sebastian J OsterfeldShan X. Wang
    • B01L3/02G01N15/06G01N33/00G01N33/48
    • B01L3/502707B01L9/527B01L2200/0689B01L2200/12B01L2300/0636B01L2300/0816B01L2300/123B01L2400/0415B01L2400/043B81B2201/058Y10T436/11Y10T436/25Y10T436/2575
    • The present invention provides microfluidic devices constructed from four layers. The layers include a rigid substrate layer, a patterned rigid layer having thickness t, a patterned elastomeric layer having thickness greater than t, and a rigid support layer. Microfluidic structures in the devices are defined by the alignment of openings in the patterned rigid layer and the patterned elastomeric layer. The rigid support layer, rigid substrate layer, and patterned rigid layer may be made of any rigid material, including but not limited to plastic or silicon-containing materials, such as glass, quartz, or SiO2-coated materials. Similarly, the patterned elastomeric layer may be made of any elastomeric material, including but not limited to polydimethylsiloxanes, polymethylmethacrylates, perfluoropolyethers, or combinations thereof. Microfluidic devices according to the present invention may include sensors or sensor arrays. The microfluidic devices are fabricated using the provided error-tolerant alignment, biocompatible process.
    • 本发明提供了由四层构成的微流体装置。 这些层包括刚性基底层,具有厚度t的图案化刚性层,厚度大于t的图案化弹性体层和刚性支撑层。 器件中的微流体结构通过图案化刚性层和图案化的弹性体层中的开口的对准来限定。 刚性支撑层,刚性基底层和图案化刚性层可以由任何刚性材料制成,包括但不限于塑料或含硅材料,例如玻璃,石英或SiO 2 - 涂层材料。 类似地,图案化的弹性体层可以由任何弹性体材料制成,包括但不限于聚二甲基硅氧烷,聚甲基丙烯酸甲酯,全氟聚醚或其组合。 根据本发明的微流体装置可以包括传感器或传感器阵列。 使用提供的容错对准,生物相容性方法制造微流体装置。
    • 8. 发明授权
    • DNA fingerprinting using a branch migration assay
    • 使用分支迁移测定的DNA指纹图谱
    • US07238486B2
    • 2007-07-03
    • US11231657
    • 2005-09-20
    • Nader PourmandRonald W. DavisShan X. Wang
    • Nader PourmandRonald W. DavisShan X. Wang
    • C12Q1/68C07H21/02C07H21/04
    • C12Q1/68C12Q1/6837C12Q2565/519C12Q2537/1373C12Q2525/204
    • A method of determining the length of a polynucleotide target is provided. With this method, a target is first hybridized to an array of first probes having different, determined lengths, resulting in the formation of duplexes between the polynucleotide target and the first probes. These duplexes have a single stranded section of target if the target is longer than the first probe it is in a duplex with. Next, a second probe having a determined length is hybridized to these duplexes. If the length of the target is greater than the length of the first probe it is displaced during this hybridization step by the process of branch migration. In contrast, if the length of the target is less than or equal to the length of the first probe, it is not displaced. Thus, the length of the polynucleotide target can be determined.
    • 提供了确定多核苷酸靶标长度的方法。 利用该方法,首先将靶与具有不同的确定长度的第一探针阵列杂交,导致在多核苷酸靶和第一探针之间形成双链体。 如果目标比第一个探针更长,那么这些双链体具有目标单链段。 接下来,具有确定长度的第二探针与这些双链体杂交。 如果靶的长度大于第一探针的长度,则在该杂交步骤期间通过分支迁移的过程被置换。 相反,如果目标的长度小于或等于第一探针的长度,则其不被移位。 因此,可以确定多核苷酸靶的长度。
    • 9. 发明授权
    • Trellis codes for transition jitter noise
    • 网格代码转换抖动噪声
    • US06411224B1
    • 2002-06-25
    • US09497827
    • 2000-02-03
    • Bruce A. WilsonShan X. Wang
    • Bruce A. WilsonShan X. Wang
    • H03M700
    • H03M13/41G11B20/10009G11B20/1426G11B2020/1446H03M5/145H03M13/6343
    • The signaling used in saturation magnetic recording is described as pulse width modulation (“PWM”). A continuous range of magnet lengths are defined between a minimum length (the smallest magnet length that can be written) and a maximum length (the longest magnet that can be read without losing clock synchronization). The recorded magnets are then partitioned into cosets according to the position of the last transition in the magnet. A finite state convolutional encoder can be used to constrain the sequence of magnet cosets. Instead of using these variable length symbols, however, the code is expressed in terms of a synchronous PAM channel, in which two consecutive transitions define a magnet. Using this expression, the code constraint on transition position is an equivalent constraint on magnet length. An appropriate encoder is created to encode the constrained code. A Viterbi detector, which reflects the code constraints, has states which are the product of the channel states of a conventional PRML detector and the encoder states. Because of the constraints, only a small subset of all branches are permitted at each resulting trellis update. A conventional sliding block decoder can be used to decode the data. In this way, a complete coded recording system can be constructed using standard building blocks of existing PRML channels, namely, a finite state encoder, a Viterbi detector and a sliding block decoder.
    • 在饱和磁记录中使用的信号被描述为脉宽调制(“PWM”)。 在最小长度(可写入的最小磁体长度)和最大长度(可以读取而不失去时钟同步的最长磁体)之间定义连续的磁体长度范围。 然后,记录的磁体根据磁体中最后的转变的位置被划分成陪集。 有限状态卷积编码器可用于约束磁铁陪集序列。 然而,代替使用这些可变长度符号,代码是以同步PAM通道来表示的,其中两个连续的转换定义磁体。 使用这个表达式,转换位置上的代码约束是对磁体长度的等效约束。 创建适当的编码器来对受限制的代码进行编码。 反映代码约束的维特比检测器具有作为常规PRML检测器的通道状态和编码器状态的乘积的状态。 由于约束,在每个结果网格更新中只允许所有分支的一小部分。 传统的滑块解码器可用于对数据进行解码。 以这种方式,可以使用现有PRML通道的标准构建块,即有限状态编码器,维特比检测器和滑块解码器来构建完整的编码记录系统。