会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Method and system for progressive clock tree or mesh construction concurrently with physical design
    • 与物理设计同时进行的时钟树或网格构造的方法和系统
    • US06651232B1
    • 2003-11-18
    • US09186430
    • 1998-11-05
    • Lawrence PileggiChristopher DunnSatyamurthy PullelaMajid SarrafzadehTong GaoSalil Raje
    • Lawrence PileggiChristopher DunnSatyamurthy PullelaMajid SarrafzadehTong GaoSalil Raje
    • G06F1750
    • G06F1/10G06F17/5077
    • Progressively optimized clock tree/mesh construction is performed concurrently with placement of all remaining objects. Clock tree/mesh is specified loosely for initial placement, then followed by progressive detailed placement. In particular, preferred approach provides automated and reliable solution to clock tree/mesh construction, occuring concurrently with placement process so that clock tree wiring and buffering considers and influences placement and wiring of all other objects, such as logic gates, memory elements, macrocells, etc. Hence, in this concurrent manner, clock tree/mesh pre-wiring and pre-buffering may be based on construction of approximate clock tree using partitioning information only, i.e., prior to object placement. Further, present approach provides modified DME-based clock tree topology construction without meandering, and recursive algorithm for buffered clock tree construction.
    • 逐渐优化的时钟树/网格构建与所有剩余对象的放置同时执行。 时钟树/网格被松散地指定用于初始放置,然后是渐进的详细放置。 特别地,优选的方法为时钟树/网格构造提供了自动化和可靠的解决方案,与布置过程同时发生,使得时钟树布线和缓冲考虑并影响所有其他对象(诸如逻辑门,存储器元件,宏单元)的布局和布线, 因此,以这种并发方式,时钟树/网格预接线和预缓冲可以基于仅使用分区信息(即,在对象放置之前)构建近似时钟树。 此外,目前的方法提供了基于改进的基于DME的时钟树拓扑构造而不进行曲折,并且缓冲时钟树构建的递归算法。
    • 4. 发明授权
    • Complementary network reduction for load modeling
    • 用于负载建模的互补网络简化
    • US5790415A
    • 1998-08-04
    • US630189
    • 1996-04-10
    • Satyamurthy PullelaAbhijit DharchoudhuryDavid T. BlaauwTim J. EdwardsJoseph W. Norton
    • Satyamurthy PullelaAbhijit DharchoudhuryDavid T. BlaauwTim J. EdwardsJoseph W. Norton
    • G06F17/50
    • G06F17/505G06F17/5022G06F2217/78
    • A process and implementing computer system (13) for optimally sizing elements of an integrated circuit includes determining actual arrival times and required arrival times (403) for processed signals at all nodes within the integrated circuit and determining the slack or difference (405) between arrival and required times for each node. If the actual arrival time for a particular node is after the time required to meet a predetermined design constraint of the node (407), a determination (411) is made regarding the effect of that element on the nodal slack for an incremental increase in the size of that element. Thereafter an element is selected (413) for sizing increase (415) in accordance with a weighting function and the process is repeated until all of the nodes in the integrated circuit have positive slack times (407, 409). One method of accomplishing a timing analysis step (303) includes an analytical circuit simulation technique (1000-1015) in which circuit "I-V" characteristics are more precisely represented with a power series (1006) including a plurality of regional segmental approximations (901-907). Another method of timing analysis includes an equivalency methodology (1501-1513) of translating passive transistors to equivalent RC networks (801). In the overall optimization process, a method is provided (1701-1715) for automatically correcting transistor predicted sensitivities based upon a correction factor (1713). A multi-model timing method (1601-1619) is also illustrated (1601-1619) for synergistically combining fast and accurate circuit timing models to optimize the speed and accuracy of the design process itself while remaining within an accuracy threshold.
    • 用于最佳地确定集成电路元件的尺寸的过程和实现计算机系统(13)包括确定集成电路内所有节点处的处理信号的实际到达时间和所需的到达时间(403),并确定到达之间的松弛或差异(405) 和每个节点所需的时间。 如果特定节点的实际到达时间在满足节点(407)的预定设计约束所需的时间之后,则确定(411)关于该元素对节点松弛的影响,以增加节点 该元素的大小。 此后,根据加权函数选择用于尺寸增加(415)的元件(413),并重复该过程,直到集成电路中的所有节点具有正的松弛时间(407,409)。 实现定时分析步骤(303)的一种方法包括一种分析电路仿真技术(1000-1015),其中电路“IV”特性被更精确地用包括多个区域分段近似(901- 907)。 定时分析的另一种方法包括将无源晶体管转换为等效RC网络的等效方法(1501-1513)(801)。 在整体优化过程中,提供了一种基于校正因子(1713)自动校正晶体管预测灵敏度的方法(1701-1715)。 还示出了多模式定时方法(1601-1619)(1601-1619),用于协同地组合快速和精确的电路定时模型,以优化设计过程本身的速度和精度,同时保持在精度阈值内。
    • 6. 发明授权
    • Simulation corrected sensitivity
    • 模拟校正灵敏度
    • US5787008A
    • 1998-07-28
    • US629488
    • 1996-04-10
    • Satyamurthy PullelaAbhijit DharchoudhuryDavid T. BlaauwTim J. EdwardsJoseph W. NortonPeter R. O'Brien
    • Satyamurthy PullelaAbhijit DharchoudhuryDavid T. BlaauwTim J. EdwardsJoseph W. NortonPeter R. O'Brien
    • G06F17/50
    • G06F17/5022G06F17/505
    • A process and implementing computer system (13) for optimally sizing elements of an integrated circuit includes determining actual arrival times and required arrival times (403) for processed signals at all nodes within the integrated circuit and determining the slack or difference (405) between arrival and required times for each node. If the actual arrival time for a particular node is after the time required to meet a predetermined design constraint of the node (407), a determination (411) is made regarding the effect of that element on the nodal slack for an incremental increase in the size of that element. Thereafter an element is selected (413) for sizing increase (415) in accordance with a weighting function and the process is repeated until all of the nodes in the integrated circuit have positive slack times (407, 409). One method of accomplishing a timing analysis step (303) includes an analytical circuit simulation technique (1000-1015) in which circuit "I-V" characteristics are more precisely represented with a power series (1006) including a plurality of regional segmental approximations (901-907). Another method of timing analysis includes an equivalency methodology (1501-1513) of translating passive transistors to equivalent RC networks (801). In the overall optimization process, a method is provided (1701-1715) for automatically correcting transistor predicted sensitivities based upon a correction factor (1713). A multi-model timing method (1601-1619) is also illustrated (1601-1619) for synergistically combining fast and accurate circuit timing models to optimize the speed and accuracy of the design process itself while remaining within an accuracy threshold.
    • 用于最佳地确定集成电路元件的尺寸的过程和实现计算机系统(13)包括确定集成电路内所有节点处的处理信号的实际到达时间和所需的到达时间(403),并确定到达之间的松弛或差异(405) 和每个节点所需的时间。 如果特定节点的实际到达时间在满足节点(407)的预定设计约束所需的时间之后,则确定(411)关于该元素对节点松弛的影响,以增加节点 该元素的大小。 此后,根据加权函数选择用于尺寸增加(415)的元件(413),并重复该过程,直到集成电路中的所有节点具有正的松弛时间(407,409)。 实现定时分析步骤(303)的一种方法包括一种分析电路仿真技术(1000-1015),其中电路“IV”特性被更精确地用包括多个区域分段近似(901- 907)。 定时分析的另一种方法包括将无源晶体管转换为等效RC网络的等效方法(1501-1513)(801)。 在整体优化过程中,提供了一种基于校正因子(1713)自动校正晶体管预测灵敏度的方法(1701-1715)。 还示出了多模式定时方法(1601-1619)(1601-1619),用于协同地组合快速和精确的电路定时模型,以优化设计过程本身的速度和精度,同时保持在精度阈值内。
    • 7. 发明授权
    • Accurate delay prediction based on multi-model analysis
    • 基于多模型分析的精确延迟预测
    • US5751593A
    • 1998-05-12
    • US629487
    • 1996-04-10
    • Satyamurthy PullelaAbhijit DharchoudhuryDavid T. BlaauwTim J. EdwardsJoseph W. Norton
    • Satyamurthy PullelaAbhijit DharchoudhuryDavid T. BlaauwTim J. EdwardsJoseph W. Norton
    • G06F17/50
    • G06F17/5031G06F17/505
    • A process and implementing computer system (13) for optimally sizing elements of an integrated circuit includes determining actual arrival times and required arrival times (403) for processed signals at all nodes within the integrated circuit and determining the slack or difference (405) between arrival and required times for each node. If the actual arrival time for a particular node is after the time required to meet a predetermined design constraint of the node (407), a determination (411) is made regarding the effect of that element on the nodal slack for an incremental increase in the size of that element. Thereafter an element is selected (413) for sizing increase (415) in accordance with a weighting function and the process is repeated until all of the nodes in the integrated circuit have positive slack times (407,409). One method of accomplishing a timing analysis step (303) includes an analytical circuit simulation technique (1000-1015) in which circuit "I-V" characteristics are more precisely represented with a power series (1006) including a plurality of regional segmental approximations (901-907). Another method of timing analysis includes an equivalency methodology (1501-1513) of translating passive transistors to equivalent RC networks (801). In the overall optimization process, a method is provided (1701-1715) for automatically correcting transistor predicted sensitivities based upon a correction factor (1713). A multi-model timing method (1601-1619) is also illustrated (1601-1619) for synergistically combining fast and accurate circuit timing models to optimize the speed and accuracy of the design process itself while remaining within an accuracy threshold.
    • 用于最佳地确定集成电路元件的尺寸的过程和实现计算机系统(13)包括确定集成电路内所有节点处的处理信号的实际到达时间和所需的到达时间(403),并确定到达之间的松弛或差异(405) 和每个节点所需的时间。 如果特定节点的实际到达时间在满足节点(407)的预定设计约束所需的时间之后,则确定(411)关于该元素对节点松弛的影响,以增加节点 该元素的大小。 此后,根据加权函数选择用于调整尺寸增加的元件(413),并重复该过程,直到集成电路中的所有节点具有正的松弛时间(407,409)。 实现定时分析步骤(303)的一种方法包括一种分析电路仿真技术(1000-1015),其中电路“IV”特性被更精确地用包括多个区域分段近似(901- 907)。 定时分析的另一种方法包括将无源晶体管转换为等效RC网络的等效方法(1501-1513)(801)。 在整体优化过程中,提供了一种基于校正因子(1713)自动校正晶体管预测灵敏度的方法(1701-1715)。 还示出了多模式定时方法(1601-1619)(1601-1619),用于协同地组合快速和精确的电路定时模型,以优化设计过程本身的速度和精度,同时保持在精度阈值内。