会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Semiconductor memory device having error detection/correction function
    • 具有误差检测/校正功能的半导体存储器件
    • US4706249A
    • 1987-11-10
    • US804177
    • 1985-12-03
    • Kaoru NakagawaMitsugi OguraKenji NatoriFujio Masuoka
    • Kaoru NakagawaMitsugi OguraKenji NatoriFujio Masuoka
    • G11C29/00G06F11/10G11C11/401G11C29/42
    • G06F11/1008G06F11/1076G11C29/42
    • In the semiconductor memory device of the invention, a normal voltage detecting circuit and a high voltage detecting circuit are connected to a terminal for the purpose of receiving a write enable signal. When a signal of normal level is supplied to the terminal, the circuit controls data read or write with respect to a memory cell array in accordance with the level of the write enable signal. An error correction code circuit is rendered operative, and a soft error generated in data read from the memory cell array is corrected. When a high voltage is applied to the terminal, the circuit sets the memory device in the read mode. The circuit detects application of the high voltage to the terminal and supplies a predetermined signal to an ECC control circuit. In response to the signal, the ECC control circuit stops the operation of the ECC circuit. Data without any correction of soft errors is output from the memory device, and testing of hard errors is simplified.
    • 在本发明的半导体存储器件中,为了接收写入使能信号,正常电压检测电路和高电压检测电路连接到端子。 当正常电平的信号被提供给终端时,电路根据写使能信号的电平来控制相对于存储单元阵列读或写的数据。 使错误校正码电路工作,校正从存储单元阵列读出的数据中产生的软错误。 当高电压施加到端子时,电路将存储器件设置在读取模式。 电路检测到高电压对端子的施加,并向ECC控制电路提供预定的信号。 响应该信号,ECC控制电路停止ECC电路的操作。 从存储器件输出没有软错误校正的数据,简化了硬错误的测试。
    • 2. 发明授权
    • Making a self aligned semiconductor device
    • 制作自对准的半导体器件
    • US4992389A
    • 1991-02-12
    • US142272
    • 1988-01-04
    • Mitsugi OguraShioji AriizumiFumio HoriguchiFujio Masuoka
    • Mitsugi OguraShioji AriizumiFumio HoriguchiFujio Masuoka
    • H01L29/94H01L21/336H01L21/768H01L27/112H01L29/78
    • H01L29/6659H01L21/76895H01L27/112H01L29/78H01L29/7835Y10S148/141
    • A method of producing a semiconductor device of high integration density and high reliability with high yield, using self-alignment techniques, including forming a gate electrode on a semiconductor substrate of a first conductivity type with an insulating film arranged above and below it, forming a pair of first impurity regions of a second conductivity type mutually separated and self-aligned with the gate electrode in the substrate, and forming a wall consisting of insulator on at least one side face of the gate electrode and the upper and lower insulating films, forming a second highly doped impurity region of second conductivity type at greater depth in the substrate than the first impurity region in a self-aligned manner with respect to the wall, forming an electrode layer connected to the second impurity region, with at least a portion of the electrode extending over the upper insulating film of the gate electrode, and selectively forming a wiring layer on the electrode layer.
    • 一种使用自对准技术制造具有高集成密度和高可靠性的半导体器件的方法,包括在第一导电类型的半导体衬底上形成栅电极,并在其上方布置绝缘膜,形成 一对第二导电类型的第一杂质区与衬底中的栅电极相互分离和自对准,并且在栅电极的至少一个侧面和上下绝缘膜上形成由绝缘体组成的壁,形成 第二导电类型的第二高掺杂杂质区域在衬底中比第一杂质区域更深的相对于壁的自对准方式,形成连接到第二杂质区域的电极层,至少部分 所述电极在所述栅电极的上绝缘膜上延伸,并且在所述电极层上选择性地形成布线层。
    • 3. 发明授权
    • Method of manufacturing a semiconductor device
    • 制造半导体器件的方法
    • US5227319A
    • 1993-07-13
    • US794660
    • 1991-11-18
    • Mitsugi OguraShioji AriizumiFumio HoriguchiFujio Masuoka
    • Mitsugi OguraShioji AriizumiFumio HoriguchiFujio Masuoka
    • H01L21/285H01L21/336H01L21/768H01L27/112H01L29/78
    • H01L29/6659H01L21/28525H01L21/76895H01L27/112H01L29/78H01L29/7835Y10S148/131
    • A method of producing a semiconductor device of high integration density and high reliability with high yield, using self-alignment techniques, including forming a gate electrode on a semiconductor substrate of a first conductivity type with an insulating film arranged above and below it, forming a pair of first impurity regions of a second conductivity type mutually separated and self-aligned with the gate electrode in the substrate, forming a wall consisting of insulator on at least one side face of the gate electrode and the upper and lower insulating films, forming a second highly doped impurity region of second conductivity type at greater depth in the substrate than the first impurity region in a self-aligned manner with respect to the wall, forming an electrode layer connected to the second impurity region, with at least a portion of the electrode extending over the upper insulating film of the gate electrode, and selectively forming a wiring layer on the electrode layer.
    • 一种使用自对准技术制造具有高集成密度和高可靠性的半导体器件的方法,包括在第一导电类型的半导体衬底上形成栅电极,并在其上方布置绝缘膜,形成 一对与衬底中的栅电极相互分离和自对准的第二导电类型的第一杂质区,在栅电极的至少一个侧面上形成由绝缘体构成的壁和上下绝缘膜,形成 第二导电类型的第二高掺杂杂质区域相对于壁以自对准的方式在衬底中比第一杂质区域更深的深度,形成连接到第二杂质区域的电极层,至少部分 电极,其延伸在栅电极的上绝缘膜上,并且在电极层上选择性地形成布线层。
    • 6. 发明授权
    • Dynamic memory cell and method for manufacturing the same
    • 动态存储单元及其制造方法
    • US4688064A
    • 1987-08-18
    • US741150
    • 1985-06-04
    • Mitsugi OguraFujio Masuoka
    • Mitsugi OguraFujio Masuoka
    • H01L23/50H01L21/8242H01L27/108H01L29/78H01L27/02H01L29/06H01L29/34
    • H01L27/10861H01L27/10829Y10S148/018
    • A first semiconductor layer of a P.sup.+ type is formed on a semiconductor substrate of a P.sup.- type and a mask layer is formed on a portion of the first semiconductor layer other than that area where a capacitor is to be formed. A hole is formed in a direction of a thickness of the first semiconductor layer, using the mask layer. An N.sup.+ layer is formed on the inner surface of the hole with the mask layer as a mask. An insulating film for capacitor formation is formed on the inner surface of the resultant hole and on that area of the first semiconductor layer where the resultant dynamic memory cell is electrically separated from an adjacent dynamic memory cell. A conductive layer acting as a capacitor electrode is formed on the capacitor formation insulating film. With the conductive layer as a mask, an impurity of an N type is doped into the first semiconductor layer to form a second semiconductor layer of a P.sup.- type in the surface portion of the first semiconductor layer. A MOS transistor is formed in the surface portion of the second conductive layer.
    • 在P型半导体衬底上形成P +型的第一半导体层,并且在除了要形成电容器的区域之外的第一半导体层的一部分上形成掩模层。 使用掩模层在第一半导体层的厚度方向上形成孔。 在掩模层作为掩模的孔的内表面上形成N +层。 在所得孔的内表面和第一半导体层的与相邻动态存储单元电分离的动态存储单元的区域上形成用于电容器形成的绝缘膜。 在电容器形成绝缘膜上形成用作电容器电极的导电层。 以导电层为掩模,在第一半导体层中掺杂N型杂质,在第一半导体层的表面部分形成P-型的第二半导体层。 MOS晶体管形成在第二导电层的表面部分中。
    • 8. 发明授权
    • Semiconductor memory devices
    • 半导体存储器件
    • US4799193A
    • 1989-01-17
    • US917042
    • 1986-10-09
    • Fumio HoriguchiYasuo ItohMitsugi OguraMasaki Momodomi
    • Fumio HoriguchiYasuo ItohMitsugi OguraMasaki Momodomi
    • G11C11/404G11C11/407G11C11/4074G11C11/24
    • G11C11/4074
    • A semiconductor memory device having at least one memory cell array block with a plurality of memory cells formed at the surface of a semiconductor substrate. Each memory cell includes a transistor and memory capacitor. The device further has a plurality of word lines for addressing the memory cells, a plurality of bit lines for reading from and writing to the memory capacitors, at least one cell plate formed on the semiconductor substrate, the cell plate forming a common electrode of the memory capacitors, a cell plate voltage generator for supplying a voltage of a level between the supply voltage and the ground voltage to the cell plate, and a control circuit for controlling the output impedance of the cell plate voltage generating unit.
    • 一种半导体存储器件,具有至少一个具有形成在半导体衬底的表面处的多个存储单元的存储单元阵列块。 每个存储单元包括晶体管和存储电容器。 该装置还具有用于寻址存储单元的多条字线,用于从存储电容器读取和写入存储电容器的多条位线,形成在半导体衬底上的至少一个单元板,形成公共电极的单元板 存储电容器,用于向电池板提供电源电压和接地电压之间的电平的电池板电压发生器,以及用于控制电池板电压产生单元的输出阻抗的控制电路。
    • 9. 发明授权
    • Semiconductor memory device with sense amplifiers
    • 具有读出放大器的半导体存储器件
    • US4748596A
    • 1988-05-31
    • US792197
    • 1985-10-28
    • Mitsugi OguraYasuo Itoh
    • Mitsugi OguraYasuo Itoh
    • G11C11/409G11C7/06G11C11/34G11C11/401G11C11/4091G11C7/00
    • G11C7/065G11C11/4091
    • In a dynamic semiconductor memory, bit line pairs and word lines are perpendicular to each other and arranged in a matrix constituted by memory cells. Dummy cells are arranged at intersections between the bit line pairs and a pair of dummy cell word lines. The capacitance of each dummy cell is half that of the memory cell. A pre-sense amplifier and a main sense amplifier are arranged in each pair of bit lines. When data is read out from a selected memory cell, the pre-sense amplifiers are simultaneously activated to perform the pre-sensing operation. However, in the main sensing operation, only one specific main sense amplifier arranged in a certain bit line pair including the bit line connected to the selected memory cell is activated.
    • 在动态半导体存储器中,位线对和字线彼此垂直并且以由存储器单元构成的矩阵布置。 虚拟单元被布置在位线对和一对虚拟单元字线之间的交点处。 每个虚拟单元的电容是存储单元的一半。 在每对位线中布置预读放大器和主读出放大器。 当从所选择的存储单元读出数据时,预读放大器同时被激活以执行预感测操作。 然而,在主感测操作中,仅激活布置在包括连接到所选择的存储器单元的位线的某一位线对中的一个特定主读出放大器。
    • 10. 发明授权
    • Semiconductor device
    • 半导体器件
    • US5942784A
    • 1999-08-24
    • US891558
    • 1997-07-11
    • Takayuki HarimaKenichi NakamuraMitsugi Ogura
    • Takayuki HarimaKenichi NakamuraMitsugi Ogura
    • H01L21/8238H01L27/08H01L27/092H03K19/094H01L29/76H01L29/94
    • H01L27/0921
    • A semiconductor device which achieves high-speed access and prevents the latch-up for any power inputting sequence by a plurality of power sources is disclosed. Where the chip voltage VDD is earlier inputted, an N well bias circuit 9 and a P well bias circuit 10 are activated, and an N-type well 12 and a P-type well 13 are biased respectively. After that, although the interface voltage VDDQ is inputted, the latch-up is not generated. On the other hand, where the interface voltage VDDQ is earlier inputted to a terminal 8, the N well bias circuit 9 and the P well bias circuit 10 are activated through a bypass circuit 15, and the N-type well 12 and the P-type well 13 are biased. Accordingly, although the chip voltage VDD is inputted after that, the latch-up is not generated.
    • 公开了一种实现高速访问并且防止由多个电源对闩锁进行任何功率输入序列的半导体器件。 在芯片电压VDD较早输入的地方,N阱偏置电路9和P阱偏置电路10被激活,N型阱12和P型阱13分别被偏置。 之后,虽然输入了接口电压VDDQ,但是不产生闭锁。 另一方面,在接口电压VDDQ较早地输入端子8的情况下,N阱偏压电路9和P阱偏置电路10通过旁路电路15被激活,N型阱12和P- 类型井13有偏差。 因此,尽管在此之后输入芯片电压VDD,但是不产生闩锁。