会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method and device for determining defects within a crystallographic
substrate
    • 用于确定晶体基底内的缺陷的方法和装置
    • US5471293A
    • 1995-11-28
    • US191387
    • 1994-02-02
    • John K. LowellMohammed AnjumValerie A. WennerNorman L. ArmourMaung H. Kyaw
    • John K. LowellMohammed AnjumValerie A. WennerNorman L. ArmourMaung H. Kyaw
    • G01N21/17G01R31/265G01N21/00
    • G01R31/2656G01N21/17
    • A method and device is provided for determining defects within a single crystal substrate. The methodology includes a surface photovoltage (SPV) technique in which the magnitude of non-linearity is quantified and correlated to defects within the crystal lattice. The correlation factor is determined in a rapid and efficient manner using least square correlation methodology without having to determine diffusion length and incur difficulties associated therewith. Obtaining a quantifiable least square correlation factor allows the operator to quickly determine the amount of crystalline damage often encountered by, for example, ion implantation. In addition, the operator can determine the relative depth and position of defective crystalline layers within the substrate based upon demarcations between monotonically and non-monotonically aligned points plotted in a graph of reciprocal photovoltage versus reciprocal absorption coefficient.
    • 提供了一种用于确定单晶衬底内的缺陷的方法和装置。 该方法包括表面光电压(SPV)技术,其中非线性的量值被量化并与晶格内的缺陷相关联。 使用最小二乘相关方法以快速和有效的方式确定相关因子,而不必确定扩散长度并引起与之相关的困难。 获得可量化的最小二乘相关因子允许操作者快速确定例如离子注入常常遇到的结晶损伤的量。 此外,操作者可以基于在互逆光电压对相对吸收系数的曲线图中绘制的单调和非单调对准点之间的分界来确定衬底内的有缺陷的晶体层的相对深度和位置。
    • 3. 发明授权
    • Semiconductor field region implant methodology
    • 半导体领域植入方法
    • US06482719B1
    • 2002-11-19
    • US08526149
    • 1995-08-02
    • Mohammed AnjumAlan L. StuberMaung H. Kyaw
    • Mohammed AnjumAlan L. StuberMaung H. Kyaw
    • H01L2130
    • H01L21/76216H01L21/823481
    • An MOS device is provided having a channel-stop implant placed between active regions and beneath field oxides. The channel-stop dopant material is a p-type material of atomic weight greater than boron, and preferably utilizes solely indium ions. The indium ions, once implanted, have a greater tendency to remain in their position than boron ions. Subsequent temperature cycles caused by, for example, field oxide growth do not significantly change the initial implant position. Thus, NMOS devices utilizing indium channel-stop dopant can achieve higher pn junction breakdown voltages and lower parasitic source/drain-to-substrate capacitances. Furthermore, the heavier indium ions can be more accurately placed than lighter boron ions to a region just below the silicon layer which is to be consumed by subsequent field oxide growth. By fixing the peak concentration density of indium at a depth just below the field oxide lower surface, channel-stop implant region is very shallow. Small dispersions in range allow for more precise control of the indium atoms just below the field oxide, further from the inner bulk material of the underlying substrate.
    • 提供了MOS器件,其具有放置在有源区域之间和场氧化物之下的通道停止植入物。 通道阻挡掺杂剂材料是原子量大于硼的p型材料,并且优选仅使用铟离子。 一旦注入,铟离子比硼离子具有更大的保留位置的倾向。 由例如场氧化物生长引起的后续温度循环不会显着改变初始植入位置。 因此,利用铟通道停止掺杂剂的NMOS器件可以实现更高的pn结击穿电压和较低的寄生源/漏极到衬底电容。 此外,较重的铟离子可以比较轻的硼离子更准确地放置在正好在随后的场氧化物生长消耗的硅层之下的区域。 通过在刚好低于场氧化物下表面的深度固定铟的峰浓度密度,通道停止注入区非常浅。 范围内的小分散体允许对场氧化物正下方的铟原子进行更精确的控制,远离底层基底的内部体积材料。
    • 6. 发明授权
    • Method for forming a silicide using ion beam mixing
    • 使用离子束混合形成硅化物的方法
    • US5470794A
    • 1995-11-28
    • US200628
    • 1994-02-23
    • Mohammed AnjumIbrahim K. BurkiCraig W. Christian
    • Mohammed AnjumIbrahim K. BurkiCraig W. Christian
    • H01L21/265H01L21/285H01L21/336H01L21/283
    • H01L29/66575H01L21/26506H01L21/26526H01L21/28518Y10S148/019
    • An improved method is provided for fabricating a metal silicide upon a semiconductor substrate. The method utilizes ion beam mixing by implanting germanium to a specific elevation level within a metal layer overlying a silicon contact region. The implanted germanium atoms impact upon and move a plurality of metal atoms through the metal-silicon interface and into a region residing immediately below the silicon (or polysilicon) surface. The metal atoms can therefore bond with silicon atoms to cause a pre-mixing of metal with silicon near the interface in order to enhance silicidation. Germanium is advantageously chosen as the irradiating species to ensure proper placement of the germanium and ensuing movement of dislodged metal atoms necessary for minimizing oxides left in the contact windows and lattice damage within the underlying silicon (or polysilicon).
    • 提供了一种用于在半导体衬底上制造金属硅化物的改进方法。 该方法通过将锗注入到覆盖硅接触区域的金属层内的特定高度水平上来利用离子束混合。 植入的锗原子冲击并移动多个金属原子通过金属 - 硅界面并移动到位于硅(或多晶硅)表面正下方的区域中。 因此,为了增强硅化物,金属原子可以与硅原子键合以在界面附近引起金属与硅的预混合。 有利地,锗被选择为照射种类,以确保锗的适当放置和随后的移动的金属原子的移动,以使残留在接触窗口中的氧化物和底层硅(或多晶硅)中的晶格损伤最小化。
    • 8. 发明授权
    • Method for producing a semiconductor gate conductor having an impurity
migration barrier
    • 一种具有杂质迁移屏障的半导体栅极导体的制造方法
    • US5633177A
    • 1997-05-27
    • US194985
    • 1993-11-08
    • Mohammed Anjum
    • Mohammed Anjum
    • H01L21/28H01L21/336H01L21/265
    • H01L29/66575H01L21/28052
    • A PMOS device is provided having a diffusion barrier placed within the polysilicon gate. The diffusion barrier is purposefully deposited to a concentration peak density within the gate which is deeper than subsequently placed impurity dopant. The barrier comprises germanium atoms placed in fairly close proximity to one another within the gate conductor, and the impurity dopant comprises an ionized compound of BF.sub.2 subsequently placed as boron within the gate and source/drain region, at least a majority and preferably greater than eighty percent of which are placed shallower within the gate than the germanium atoms. The barrier region substantially prevents or retards penetration of boron atoms through the gate oxide and into the channel region. Thus, the barrier helps prevent change in channel concentration and problems associated with boron penetration such as flatband voltage (Vfb) and threshold voltage (Vth) shift.
    • 提供PMOS器件,其具有放置在多晶硅栅极内的扩散势垒。 扩散阻挡层被有目的地沉积到栅极内的浓度峰值密度,其比随后放置的杂质掺杂物更深。 阻挡层包括在栅极导体内彼此非常接近地放置的锗原子,杂质掺杂剂包括随后在栅极和源极/漏极区中放置为硼的电离化合物BF 2,至少大部分,优选大于八十 其中百分之一比锗原子在门内更浅。 阻挡区域基本上防止或阻止硼原子穿过栅极氧化物并进入沟道区域。 因此,屏障有助于防止通道浓度的变化和与硼渗透相关的问题,例如平带电压(Vfb)和阈值电压(Vth)偏移。
    • 9. 发明授权
    • Method for low energy implantation of argon to control titanium silicide
formation
    • 用于低能量注入氩气以控制硅化钛形成的方法
    • US5444024A
    • 1995-08-22
    • US258542
    • 1994-06-10
    • Mohammed AnjumIbrahim K. BurkiCraig W. Christian
    • Mohammed AnjumIbrahim K. BurkiCraig W. Christian
    • H01L21/285H01L21/265H01L21/28
    • H01L21/28518Y10S148/019Y10S148/144
    • A method is provided for controlling growth of silicide to a defined thickness based upon the relative position of peak concentration density depth within a layer of titanium. The titanium layer is deposited over silicon and namely over the silicon junction regions. Thereafter the titanium is implanted with argon ions. The argon ions are implanted at a peak concentration density level corresponding to a depth relative to the upper surface of the titanium. The peak concentration density depth can vary depending upon the dosage and implant energies of the ion implanter. Preferably, the peak concentration density depth is at a midpoint between the upper and lower surfaces of the titanium or at an elevational level beneath the midpoint and above the lower surface of the titanium. Subsequent anneal of the argon-implanted titanium causes the argon atoms to occupy a diffusion area normally taken by silicon consumed and growing within overlying titanium. However, based upon the presence of argon, the diffusion length and therefore the silicide thickness is reduced to a controllable amount necessary for applications with ultra-shallow junction depths.
    • 提供了一种基于钛层内的峰浓度密度深度的相对位置来控制硅化物的规定厚度的方法。 钛层沉积在硅上,即在硅结区上。 之后,用氩离子注入钛。 以与钛的上表面相对应的深度的峰值浓度密度水平注入氩离子。 峰浓度密度深度可以根据离子注入机的剂量和植入能量而变化。 优选地,峰浓度密度深度处于钛的上表面和下表面之间的中点处,或者在钛的下表面上方的中点以上。 氩注入钛的后续退火导致氩原子占据通常被硅消耗并在上覆钛内生长的扩散区域。 然而,基于氩的存在,扩散长度以及因此的硅化物厚度减小到具有超浅结深度的应用所需的可控量。