会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method and device for determining defects within a crystallographic
substrate
    • 用于确定晶体基底内的缺陷的方法和装置
    • US5471293A
    • 1995-11-28
    • US191387
    • 1994-02-02
    • John K. LowellMohammed AnjumValerie A. WennerNorman L. ArmourMaung H. Kyaw
    • John K. LowellMohammed AnjumValerie A. WennerNorman L. ArmourMaung H. Kyaw
    • G01N21/17G01R31/265G01N21/00
    • G01R31/2656G01N21/17
    • A method and device is provided for determining defects within a single crystal substrate. The methodology includes a surface photovoltage (SPV) technique in which the magnitude of non-linearity is quantified and correlated to defects within the crystal lattice. The correlation factor is determined in a rapid and efficient manner using least square correlation methodology without having to determine diffusion length and incur difficulties associated therewith. Obtaining a quantifiable least square correlation factor allows the operator to quickly determine the amount of crystalline damage often encountered by, for example, ion implantation. In addition, the operator can determine the relative depth and position of defective crystalline layers within the substrate based upon demarcations between monotonically and non-monotonically aligned points plotted in a graph of reciprocal photovoltage versus reciprocal absorption coefficient.
    • 提供了一种用于确定单晶衬底内的缺陷的方法和装置。 该方法包括表面光电压(SPV)技术,其中非线性的量值被量化并与晶格内的缺陷相关联。 使用最小二乘相关方法以快速和有效的方式确定相关因子,而不必确定扩散长度并引起与之相关的困难。 获得可量化的最小二乘相关因子允许操作者快速确定例如离子注入常常遇到的结晶损伤的量。 此外,操作者可以基于在互逆光电压对相对吸收系数的曲线图中绘制的单调和非单调对准点之间的分界来确定衬底内的有缺陷的晶体层的相对深度和位置。
    • 2. 发明授权
    • Method of detecting heavy metal impurities introduced into a silicon
wafer during ion implantation
    • 检测在离子注入期间引入硅晶片的重金属杂质的方法
    • US5804981A
    • 1998-09-08
    • US643981
    • 1996-05-07
    • John K. LowellNorman L. ArmourJulia Sherry
    • John K. LowellNorman L. ArmourJulia Sherry
    • H01L21/66G01R31/302
    • H01L22/20H01L22/12
    • The present method allows detection of heavy metal impurities introduced into a silicon wafer during an ion implantation procedure. The method is quick, non-destructive, and functions in the presence of extensive lattice damage created during ion implantation. A thermal treatment follows ion implantation to cause any heavy metal impurities to diffuse into near-surface regions adjacent to major surfaces. A major surface of the silicon wafer is subjected to a high-injection SPV frequency sweep procedure before and after the thermal treatment. During each high-injection SPV frequency sweep procedure, the major surface is subjected to a train of light pulses modulated at frequencies within a frequency range of interest spanning from a low frequency cutoff (about 280 Hz) to a high frequency cutoff (about 10 kHz). Surface charge values are derived from surface photovoltages measured at each modulation frequency. Ratios of surface charge values corresponding to endpoints of the frequency range of interest are used to gauge generation lifetimes before and after the thermal treatment. A decrease in generation lifetime following the thermal treatment indicates the introduction and subsequent diffusion of heavy metal contaminants into the near-surface region adjacent to the analyzed surface.
    • 本方法允许在离子注入过程中检测引入硅晶片的重金属杂质。 该方法快速,无损,并且在离子注入期间产生广泛的晶格损伤时起作用。 离子注入后进行热处理,使任何重金属杂质扩散到与主表面相邻的近表面区域。 在热处理之前和之后,对硅晶片的主表面进行高喷射SPV频率扫描程序。 在每个高喷射SPV频率扫描过程期间,主表面经受在从低频截止(约280Hz)到高频截止(约10kHz)的感兴趣的频率范围内的频率处调制的一串光脉冲 )。 表面电荷值来自于在每个调制频率下测量的表面光电压。 对应于感兴趣频率范围的端点的表面电荷值的比例用于测量热处理前后的生成寿命。 热处理后的发电寿命减少表明重金属污染物引入并随后扩散到与被分析表面相邻的近表面区域。
    • 3. 发明授权
    • In-line detection and assessment of net charge in PECVD silicon dioxide
(oxide) layers
    • 在线检测和评估PECVD二氧化硅(氧化物)层中的净电荷
    • US5907764A
    • 1999-05-25
    • US556310
    • 1995-11-13
    • John K. LowellFred N. HauseRobert Dawson
    • John K. LowellFred N. HauseRobert Dawson
    • H01L21/316H01L21/66H01L21/302
    • H01L21/31612H01L21/02112H01L21/02274H01L22/14
    • The present method provides for the detection and assessment of the net charge in a PECVD oxide layer deposited on a surface of a semiconductor substrate. Electrical potential differences across PECVD oxide layers on as-produced semiconductor substrates are measured. Resultant PECVD oxide charge derivative values are plotted on an control chart and compared to calculated control parameters. All measurement techniques are non-contact and non-destructive, allowing them to be performed on as-processed semiconductor substrates at any time during or following a wafer fabrication process. In a first embodiment, a contact potential difference V.sub.CPD between a vibrating electrode and the semiconductor substrate is measured while the semiconductor substrate beneath the vibrating electrode is subjected to a constant beam of high intensity illumination. The resultant value of V.sub.CPD is equal to the electrical potential difference across the PECVD oxide layer V.sub.OX (plus a constant). In a second embodiment, the semiconductor substrate is not illuminated during the measurement of V.sub.CPD. A conventional SPV apparatus is used to measure the surface barrier potential V.sub.SP of the semiconductor substrate. Subtracting the measured value of V.sub.SP from the measured value of V.sub.CPD yields the value of V.sub.OX (plus a constant).
    • 本方法提供了在沉积在半导体衬底的表面上的PECVD氧化物层中的净电荷的检测和评估。 测量生成半导体衬底上的PECVD氧化物层的电位差。 将得到的PECVD氧化物电荷衍生值绘制在控制图上并与计算的控制参数进行比较。 所有测量技术都是非接触式和非破坏性的,允许它们在晶片制造过程中或之后的任何时间在经处理的半导体衬底上进行。 在第一实施例中,测量振动电极和半导体衬底之间的接触电位差VCPD,同时振动电极下方的半导体衬底经受恒定的高强度照明光束。 VCPD的结果值等于PECVD氧化物层VOX(加常数)之间的电位差。 在第二实施例中,在测量VCPD期间,半导体衬底不被照亮。 常规的SPV装置用于测量半导体衬底的表面势垒电位VSP。 从VCPD的测量值中减去VSP的测量值,得到VOX的值(加一个常数)。
    • 4. 发明授权
    • Characterization of an external silicon interface using optical second
harmonic generation
    • 使用光二次谐波产生的外部硅接口的表征
    • US5557409A
    • 1996-09-17
    • US322324
    • 1994-10-13
    • Michael DownerJerry I. DadapJohn K. Lowell
    • Michael DownerJerry I. DadapJohn K. Lowell
    • G01B11/30
    • G01B11/30
    • A non-destructive, non-intrusive characterization of angstrom-level roughness characteristics of subsurface interfaces is performed by applying femtosecond light pulses from a laser onto a surface, and analyzing the contents of the reflected pulses. After impinging on the surface being analyzed, the pulses pass through optical filters, which attenuate the fundamental and third harmonic frequencies of the pulses, but keep a substantial portion of the second harmonic. Analysis of the second harmonic signals provides rapid, non-contact, interface-specific characterization of the angstrom-level interfacial microroughness of the subsurface. For semiconductor devices, the second harmonic signals can be used to detect strain, contamination, and trapped charges in the Si/Si(O.sub.2) interface.
    • 通过将来自激光的飞秒光脉冲施加到表面上,并分析反射脉冲的内容来执行地下界面的埃氏平面粗糙度特性的非破坏性,非侵入性表征。 在撞击在被分析的表面上之后,脉冲通过滤光器,这会衰减脉冲的基波和三次谐波频率,但保持二次谐波的很大一部分。 二次谐波信号的分析提供了地下水平面微观粗糙度的快速,非接触,界面特异性表征。 对于半导体器件,二次谐波信号可用于检测Si / Si(O 2)界面中的应变,污染和俘获电荷。
    • 5. 发明授权
    • In-line detection and assessment of net charge in PECVD silicon dioxide
(oxide) layers
    • 在线检测和评估PECVD二氧化硅(氧化物)层中的净电荷
    • US5963783A
    • 1999-10-05
    • US93239
    • 1998-06-08
    • John K. LowellFred N. HauseRobert Dawson
    • John K. LowellFred N. HauseRobert Dawson
    • H01L21/316H01L21/66G01R31/265
    • H01L21/31612H01L21/02112H01L21/02274H01L22/14
    • The present method provides for the detection and assessment of the net charge in a PECVD oxide layer deposited on a surface of a semiconductor substrate. Electrical potential differences across PECVD oxide layers on as-produced semiconductor substrates are measured. Resultant PECVD oxide charge derivative values are plotted on an control chart and compared to calculated control parameters. All measurement techniques are non-contact and non-destructive, allowing them to be performed on as-processed semiconductor substrates at any time during or following a wafer fabrication process. In a first embodiment, a contact potential difference V.sub.CPD between a vibrating electrode and the semiconductor substrate is measured while the semiconductor substrate beneath the vibrating electrode is subjected to a constant beam of high intensity illumination. The resultant value of V.sub.CPD is equal to the electrical potential difference across the PECVD oxide layer V.sub.OX (plus a constant). In a second embodiment, the semiconductor substrate is not illuminated curing the measurement of V.sub.CPD. A conventional SPV apparatus is used to measure the surface barrier potential V.sub.SP of the semiconductor substrate. Subtracting the measured value of V.sub.SP from the measured value of V.sub.CPD yields the value of V.sub.OX (plus a constant).
    • 本方法提供了在沉积在半导体衬底的表面上的PECVD氧化物层中的净电荷的检测和评估。 测量生成半导体衬底上的PECVD氧化物层的电位差。 将得到的PECVD氧化物电荷衍生值绘制在控制图上并与计算的控制参数进行比较。 所有测量技术都是非接触式和非破坏性的,允许它们在晶片制造过程中或之后的任何时间在经处理的半导体衬底上进行。 在第一实施例中,测量振动电极和半导体衬底之间的接触电位差VCPD,同时振动电极下方的半导体衬底经受恒定的高强度照明光束。 VCPD的结果值等于PECVD氧化物层VOX(加常数)之间的电位差。 在第二实施例中,半导体衬底不被照射固化VCPD的测量。 常规的SPV装置用于测量半导体衬底的表面势垒电位VSP。 从VCPD的测量值中减去VSP的测量值,得到VOX的值(加一个常数)。
    • 7. 发明授权
    • Device for reducing plasma etch damage and method for manufacturing same
    • 减少等离子体蚀刻损伤的装置及其制造方法
    • US06190518B1
    • 2001-02-20
    • US08095147
    • 1993-07-20
    • Tony T. PhanTom J. GoodwinJohn K. Lowell
    • Tony T. PhanTom J. GoodwinJohn K. Lowell
    • C23C1434
    • H01L21/31116H01J2237/0206
    • An improved sputter etching technique is provided for substantially preventing or reducing plasma etch damages associated with sputter etching. The plasma etch technique can utilize a semiconductor wafer having at least one diode formed within an inactive region of the wafer near the outer periphery of the wafer. The diode is capable of preventing charge transfer or arcing between the grounded anode and the p-channel gate region. By placing a diode within the inactive region of the wafer, problems such as gate oxide breakdown, threshold voltage skew, flat-band voltage skew, etc. can be minimized or substantially reduced. Alternatively, a standard wafer not having an implanted or diffused diode can be utilized to obtain similar beneficial results provided the sputter etch anode is retrofitted to include a diode placed between the anode and the ground terminal. Similar to the diode placed on the wafer, the retrofitted anode is used to provide a depletion region for preventing charge transfer therethrough.
    • 提供了一种改进的溅射蚀刻技术,用于基本上防止或减少与溅射蚀刻相关的等离子体蚀刻损伤。 等离子体蚀刻技术可以利用在晶片的外周附近形成有至少一个二极管的半导体晶片,该二极管形成在晶片的非活动区域内。 二极管能够防止接地阳极和p沟道栅极区域之间的电荷转移或电弧。 通过将二极管放置在晶片的非活性区域内,可以最小化或显着降低诸如栅极氧化物击穿,阈值电压偏移,平带电压偏移等问题。 或者,可以使用不具有注入或扩散二极管的标准晶片来获得类似的有益结果,只要溅射蚀刻阳极被改进以包括置于阳极和接地端子之间的二极管即可。 类似于放置在晶片上的二极管,改进的阳极用于提供用于防止电荷转移通过的耗尽区域。
    • 8. 发明授权
    • Method and apparatus for the detection of light elements on the surface
of a semiconductor substrate using x-ray fluorescence (XRF)
    • 使用X射线荧光(XRF)检测半导体衬底的表面上的光元件的方法和装置
    • US5778039A
    • 1998-07-07
    • US604257
    • 1996-02-21
    • Tim Z. HossainJohn K. Lowell
    • Tim Z. HossainJohn K. Lowell
    • G01N23/20G01N23/223
    • G01N23/20008G01N23/223G01N2223/076
    • A method and apparatus are presented which provide non-intrusive detection of atoms of light elements (atomic numbers 3-13) on a surface of a semiconductor substrate using X-ray fluorescence (XRF). The present technique may be economically performed routinely on manufactured products. The method includes producing a monochromatic X-ray beam comprising X-ray photons with energy levels operably chosen to cause only atoms of light elements to emit secondary X-ray photons. The monochromatic X-ray beam is then focused onto a circular exposed region on the surface of the semiconductor substrate, the circular exposed region having a diameter ranging from about 0.5 mm to about 10.0 mm. Secondary X-ray photons emitted by atoms of light elements in the exposed region on the surface of the semiconductor substrate are directed to at least one X-ray detector. Each X-ray detector is aligned to receive secondary X-ray photons from a single light element, and is illuminated for a predetermined amount of time. The number of secondary X-ray photons detected by an X-ray detector in a predetermined amount of time is directly proportional to the number of atoms of a corresponding light element on the surface of the semiconductor substrate. The apparatus includes a high-power X-ray source, a first collimator, a first multilayer crystal, a focusing capillary, a second collimator, a second multilayer crystal, and at least one X-ray detector.
    • 提出了一种使用X射线荧光(XRF)在半导体衬底的表面上提供轻元素原子(原子序数3-13)的非侵入性检测的方法和装置。 本技术可以经济地在制造产品上执行。 该方法包括产生包括具有可操作地选择的能级的X射线光子的单色X射线束,以仅使光元件的原子发射次级X射线光子。 然后将单色X射线束聚焦到半导体衬底的表面上的圆形暴露区域上,该圆形暴露区域的直径范围为约0.5mm至约10.0mm。 在半导体衬底的表面上的暴露区域中由光元件的原子发射的次级X射线光子被引导到至少一个X射线检测器。 每个X射线检测器对准以从单个光元件接收次X射线光子,并且被照亮预定的时间量。 在X射线检测器中以预定的时间量检测到的次级X射线光子的数量与半导体衬底表面上相应的光元件的原子数成正比。 该装置包括大功率X射线源,第一准直仪,第一多层晶体,聚焦毛细管,第二准直仪,第二多层晶体和至少一个X射线检测器。
    • 9. 发明授权
    • Method and apparatus for determining the thickness and elemental
composition of a thin film using radioisotopic X-ray fluorescence (RXRF)
    • 使用放射性同位素X射线荧光(RXRF)测定薄膜的厚度和元素组成的方法和装置
    • US5657363A
    • 1997-08-12
    • US541876
    • 1995-10-10
    • Tim Z. HossainJohn K. Lowell
    • Tim Z. HossainJohn K. Lowell
    • G01N23/223
    • G01N23/223G01N2223/076
    • A method and apparatus is presented which applies X-ray fluorescence spectrometry techniques to the problem of determining the elemental composition and thickness of multi-layer structures formed upon a semiconductor substrate. The resulting method and apparatus allows fast, accurate, non-contact, non-destructive, single-measurement determination of the compositions and thicknesses of each thin film on a surface of a measurement sample. Primary X-ray photons emitted by two radioisotopic X-ray sources following defined X-ray paths are incident upon a measurement sample. If the primary X-ray photons have sufficient energy, atoms in the exposed surface of the measurement sample will absorb the energies of the incident primary X-ray photons and emit secondary X-ray photons with characteristic energy levels. Secondary X-ray photons following paths within a defined detection space will reach a sensing face of a lithium-drifted silicon detector and will be detected and counted by a measurement system. The elemental composition of a thin film on an exposed surface of a measurement sample may be determined from the characteristic energy levels of the secondary X-ray photons emitted by the atoms in the thin film. The areas under all corresponding peaks in a graph of the number of secondary X-ray photons detected in predetermined energy ranges (i.e., counts) versus the predetermined energy ranges are directly proportional to the thickness of the thin film.
    • 本发明提供了一种方法和装置,其应用X射线荧光光谱技术来确定形成在半导体衬底上的多层结构的元素组成和厚度的问题。 所得到的方法和装置允许测量样品表面上的每个薄膜的组成和厚度的快速,准确,非接触,非破坏性,单次测量。 两个放射性同位素X射线源在定义的X射线路径之后发射的初级X射线光子入射到测量样品上。 如果主X射线光子具有足够的能量,则测量样品的暴露表面中的原子将吸收入射的初级X射线光子的能量并且发射具有特征能级的次级X射线光子。 在确定的检测空间内的次级X射线光子之后的路径将到达锂漂移的硅检测器的感测面,并将被测量系统检测和计数。 在测量样品的暴露表面上的薄膜的元素组成可以从由薄膜中的原子发射的次级X射线光子的特征能级确定。 在预定能量范围(即计数)中检测到的次级X射线光子数目与预定能量范围相对应的峰下的面积与薄膜的厚度成正比。
    • 10. 发明授权
    • Method and apparatus for passive optical characterization of
semiconductor substrates subjected to high energy (MEV) ion
implantation using high-injection surface photovoltage
    • 使用高注射表面光电压进行高能量(MEV)离子注入的半导体衬底的无源光学表征的方法和装置
    • US5581194A
    • 1996-12-03
    • US473193
    • 1995-06-07
    • John K. Lowell
    • John K. Lowell
    • G01R31/265G01R31/28H01L21/66G01R31/302
    • G01R31/2831G01R31/2656H01L22/12H01L22/14
    • The method and apparatus of the present invention provides a fast, efficient, non-contact, non-destructive means of characterizing surface and near-surface regions of a semiconductor substrate subjected to high-energy (MeV) ion implantation through interpretation of a graph of surface charge versus modulation frequency of incident monochromatic light. The near-surface region of a semiconductor substrate is defined to extend from just below the surface of the semiconductor substrate to a depth of 0.8 .mu.m. Similar to existing SPV/SCI techniques, a semiconductor substrate is radiated with high photon energy such that energy bands become almost flat at the surface of the semiconductor substrate. Surface photovoltages produced at different modulation frequencies of incident light pulses are measured and recorded. Resultant surface charges are derived from measured surface photovoltages, and a graph is made of surface charge versus the modulation frequency of incident light pulses. Structural and material defects affecting the characteristics of the surface and near-surface regions of the semiconductor substrate may then be diagnosed from the resulting graph.
    • 本发明的方法和装置提供了快速,有效,非接触,非破坏性的手段,其通过解释经过高能量(MeV)离子注入的半导体衬底的表面和近表面区域, 表面电荷与入射单色光的调制频率。 半导体衬底的近表面区域被限定为从半导体衬底的正下方延伸到0.8μm的深度。 类似于现有的SPV / SCI技术,半导体衬底以高光子能量辐射,使得能带在半导体衬底的表面变得几乎平坦。 测量和记录在入射光脉冲的不同调制频率下产生的表面光电压。 所得的表面电荷是从测量的表面光电压导出的,并且图表是表面电荷与入射光脉冲的调制频率的关系。 然后可以从所得图形中诊断影响半导体衬底的表面和近表面区域的特性的结构和材料缺陷。