会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Using ONO as hard mask to reduce STI oxide loss on low voltage device in
flash or EPROM process
    • 使用ONO作为硬掩模,以减少闪存或EPROM工艺中低电压器件的STI氧化物损耗
    • US06130168A
    • 2000-10-10
    • US349844
    • 1999-07-08
    • Wen-Ting ChuDi-Son KuoChrong-Jung LinHung-Der SuJong Chen
    • Wen-Ting ChuDi-Son KuoChrong-Jung LinHung-Der SuJong Chen
    • H01L21/32H01L21/8234H01L21/8247H01L27/105H01L21/302
    • H01L27/11526H01L21/32H01L21/823462H01L21/823481H01L27/105H01L27/11546Y10S438/954
    • A new method of forming differential gate oxide thicknesses for both high and low voltage transistors is described. A semiconductor substrate is provided wherein active areas of the substrate are isolated from other active areas by shallow trench isolation regions. A polysilicon layer is deposited overlying a tunneling oxide layer on the surface of the substrate. The polysilicon and tunneling oxide layers are removed except in the memory cell area. An ONO layer is deposited overlying the polysilicon layer in the memory cell area and on the surface of the substrate in the low voltage and high voltage areas. The ONO layer is removed in the high voltage area. The substrate is oxidized in the high voltage area to form a thick gate oxide layer. Thereafter, the ONO layer is removed in the low voltage area and the substrate is oxidized to form a thin gate oxide layer. A second polysilicon layer is deposited over the ONO layer in the memory area, over the thin gate oxide layer in the low voltage area, and over the thick gate oxide layer in the high voltage area. The second polysilicon layer, ONO layer and first polysilicon layer in the memory cell area are patterned to form a control gate overlying a floating gate separated by the ONO layer. The second polysilicon layer is patterned to form a low voltage transistor in the low voltage area and a high voltage transistor in the high voltage area.
    • 描述了为高压和低压晶体管形成差分栅极氧化物厚度的新方法。 提供半导体衬底,其中衬底的有源区域通过浅沟槽隔离区域与其它有源区域隔离。 沉积在衬底表面上的隧道氧化物层上的多晶硅层。 去除多晶硅和隧道氧化物层,除了在存储单元区域中。 沉积在存储单元区域中的多晶硅层和低电压和高电压区域的衬底表面上的ONO层。 在高电压区域中去除ONO层。 衬底在高压区域被氧化以形成厚的栅极氧化物层。 此后,在低电压区域中去除ONO层,并且衬底被氧化以形成薄的栅极氧化物层。 第二多晶硅层沉积在存储区域中的ONO层上,在低电压区域的薄栅极氧化物层上方,以及高电压区域中的厚栅极氧化物层上方。 将存储单元区域中的第二多晶硅层,ONO层和第一多晶硅层图案化以形成覆盖由ONO层分离的浮动栅极的控制栅极。 将第二多晶硅层图案化以在低电压区域中形成低压晶体管,并在高电压区域形成高压晶体管。
    • 6. 发明授权
    • Tilt-angle ion implant to improve junction breakdown in flash memory application
    • 倾斜离子注入,以改善闪存应用中的结点故障
    • US06297098B1
    • 2001-10-02
    • US09431236
    • 1999-11-01
    • Chrong-Jung LinHung-Der SuJong ChenWen-Ting Chu
    • Chrong-Jung LinHung-Der SuJong ChenWen-Ting Chu
    • H01L218247
    • H01L27/11521H01L21/26586
    • A method is disclosed for forming LDDs (Lightly Doped Drains) in high voltage devices employed in non-volatile memories and DDDs (Doubly Doped Drains) in flash memory applications. The high voltage device is formed by using two successive ion implantations at a tilted angle which provides an improved gradation of doped profile near the junction and the attendant improvement in junction breakdown at higher voltages. The doubly doped drain in a stacked flash memory cell is also formed by two implantations, but at an optimum tilt-angle, where the first implantation is lightly doped, and the second, heavily doped. The resulting DDD provides faster program speed, reduced program current, increase read current and reduced drain disturb in the flash memory cell.
    • 公开了一种用于在闪速存储器应用中用于非易失性存储器和DDD(双掺杂漏极)的高压器件中形成LDD(轻掺杂漏极)的方法。 高压器件通过以倾斜角度使用两个连续的离子注入形成,其提供了接合点附近的掺杂分布的改进的灰度级,并且在更高的电压下提高了结点击穿。 层叠闪存单元中的双掺杂漏极也通过两次注入形成,但是以最佳倾角形成,其中第一次注入被轻掺杂,而第二次重掺杂。 由此产生的DDD提供更快的编程速度,减少编程电流,增加读取电流和减少闪存单元中的漏极干扰。
    • 9. 发明授权
    • Flash memory cell with vertical channels, and source/drain bus lines
    • 具有垂直通道的闪存单元,以及源极/漏极总线
    • US6011288A
    • 2000-01-04
    • US995999
    • 1997-12-22
    • Chrong-Jung LinShui Hung ChenJong ChenDi-Son Kuo
    • Chrong-Jung LinShui Hung ChenJong ChenDi-Son Kuo
    • H01L21/8247H01L27/115H01L29/423H01L29/788
    • H01L27/11521H01L27/115H01L29/42324H01L29/7885
    • A vertical memory device on a silicon semiconductor substrate comprises a floating gate trench in the substrate, in the array, the trench. The walls of the floating gate trench were doped with a threshold implant through the trench surfaces. There is a tunnel oxide layer on the trench surfaces, the tunnel oxide layer having outer surfaces. There is a floating gate electrode in the trench on the outer surfaces of the tunnel oxide layer. There are source/drain regions in the substrate self-aligned with the floating gate electrode. The source line and a drain line form above the source region and the drain region respectively. An interelectrode dielectric layer overlies the top surface of the floating gate electrode, and the source line and the drain line, and there is a control gate electrode over the interelectrode dielectric layer over the top surface of the floating gate electrode.
    • 硅半导体衬底上的垂直存储器件包括衬底中的浮置栅沟槽,阵列中的沟槽。 浮栅沟的壁通过沟槽表面掺杂有阈值注入。 在沟槽表面上存在隧道氧化物层,隧道氧化物层具有外表面。 在隧道氧化物层的外表面上的沟槽中存在浮栅电极。 衬底中的源极/漏极区域与浮置栅电极自对准。 源极线和漏极线分别形成在源极区域和漏极区域的上方。 电极间电介质层位于浮置栅电极的顶表面,源极线和漏极线之上,并且在浮栅电极顶表面上的电极间电介质层上方具有控制栅电极。
    • 10. 发明授权
    • Method for forming vertical channels in split-gate flash memory cell
    • 分闸式闪存单元形成垂直通道的方法
    • US5970341A
    • 1999-10-19
    • US988772
    • 1997-12-11
    • Chrong-Jung LinChia-Ta HsiehJong ChenDi-Son Kuo
    • Chrong-Jung LinChia-Ta HsiehJong ChenDi-Son Kuo
    • H01L21/28H01L21/336H01L21/8247H01L29/423H01L29/788
    • H01L27/11521H01L21/28273H01L29/42336H01L29/66825H01L29/7883
    • A method of forming a vertical memory split gate flash memory device on a silicon semiconductor substrate is provided by the following steps. Form a floating gate trench hole in the silicon semiconductor substrate, the trench hole having trench surfaces. Form a tunnel oxide layer on the trench surfaces, the tunnel oxide layer having outer surfaces. Form a floating gate electrode layer filling the trench hole on the outer surfaces of the tunnel oxide layer. Form source/drain regions in the substrate self-aligned with the floating gate electrode layer. Pattern the floating gate electrode layer by removing the gate electrode layer from the drain region side of the trench hole. Form a control gate hole therein. Form an interelectrode dielectric layer over the top surface of the floating gate electrode, and over the tunnel oxide layer. Form a control gate electrode over the interelectrode dielectric layer over the top surface of the floating gate electrode and extending down into the control gate hole in the trench hole.
    • 通过以下步骤提供在硅半导体衬底上形成垂直存储器分离栅极闪存器件的方法。 在硅半导体衬底中形成浮栅沟槽,沟槽具有沟槽表面。 在沟槽表面上形成隧道氧化物层,隧道氧化物层具有外表面。 形成填充隧道氧化物层的外表面上的沟槽的浮栅电极层。 衬底中的源极/漏极区域与浮栅电极层自对准。 通过从沟槽的漏极区域侧去除栅极电极层来对浮栅电极层进行构图。 在其中形成控制门孔。 在浮栅电极的顶表面上方,并在隧道氧化物层之上形成电极间电介质层。 在浮栅电极的顶表面上方的电极间电介质层上形成控制栅电极,并向下延伸到沟槽孔中的控制栅极孔。