会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Nitride semiconductor, nitride semiconductor crystal growth method, and nitride semiconductor light emitting element
    • 氮化物半导体,氮化物半导体晶体生长方法和氮化物半导体发光元件
    • US08652948B2
    • 2014-02-18
    • US12744163
    • 2008-11-20
    • Hideyoshi HorieKaori Kurihara
    • Hideyoshi HorieKaori Kurihara
    • H01L21/20
    • H01L33/0075C30B25/02C30B29/403H01L21/0237H01L21/02433H01L21/02458H01L21/0254H01L21/0262H01L21/02658H01L33/007H01L33/16
    • During the growth of a nitride semiconductor crystal on a nonpolar face nitride substrate, such as an m-face, the gas that constitutes the main flow in the process of heating up to a relatively high temperature range, before growth of the nitride semiconductor layer, (the atmosphere to which the main nitride face of the substrate is exposed) and the gas that constitutes the main flow until growth of first and second nitride semiconductor layers is completed (the atmosphere to which the main nitride face of the substrate is exposed) are primarily those that will not have an etching effect on the nitride, while no Si source is supplied at the beginning of growth of the nitride semiconductor layer. Therefore, nitrogen atoms are not desorbed from near the nitride surface of the epitaxial substrate, thus suppressing the introduction of defects into the epitaxial film. This also makes epitaxial growth possible with a surface morphology of excellent flatness.
    • 在氮化物半导体层生长之前,在非极性面状氮化物衬底(例如m面)上生长氮化物半导体晶体的过程中,在加热到较高温度范围的过程中构成主流的气体, (暴露基板的主氮化物面的气氛)和构成主流的气体直到第一和第二氮化物半导体层的生长完成(衬底的主氮化物面露出的气氛)为止 主要是那些不会对氮化物具有蚀刻效果的那些,而在氮化物半导体层的生长开始时不提供Si源。 因此,氮原子不会从外延衬底的氮化物表面附近脱附,从而抑制了向外延膜的缺陷的引入。 这也使得外延生长可能具有优异的平坦度的表面形态。
    • 3. 发明申请
    • NITRIDE SEMICONDUCTOR
    • 氮化物半导体
    • US20110253974A1
    • 2011-10-20
    • US13112564
    • 2011-05-20
    • Hideyoshi HORIEKaori Kurihara
    • Hideyoshi HORIEKaori Kurihara
    • H01L33/06
    • H01L33/06H01L21/0237H01L21/0254H01L21/02573H01L21/02609H01L21/0262H01L33/0025H01L33/02H01L33/16H01L33/18H01L33/32H01L33/325
    • To provide a high-quality nitride semiconductor ensuring high emission efficiency of a light-emitting element fabricated. In the present invention, when obtaining a nitride semiconductor by sequentially stacking a one conductivity type nitride semiconductor part, a quantum well active layer structure part, and a another conductivity type nitride semiconductor part opposite the one conductivity type, the crystal is grown on a base having a nonpolar principal nitride surface, the one conductivity type nitride semiconductor part is formed by sequentially stacking a first nitride semiconductor layer and a second nitride semiconductor layer, and the second nitride semiconductor layer has a thickness of 400 nm to 20 mm and has a nonpolar outermost surface. By virtue of selecting the above-described base for crystal growth, an electron and a hole, which are contributing to light emission, can be prevented from spatial separation based on the QCSE effect and efficient radiation is realized. Also, by setting the thickness of the second nitride semiconductor layer to an appropriate range, the nitride semiconductor surface can avoid having extremely severe unevenness.
    • 提供确保所制造的发光元件的高发射效率的高质量氮化物半导体。 在本发明中,当通过依次层叠一个导电型氮化物半导体部件,量子阱活性层结构部分和与一种导电类型相反的另一导电型氮化物半导体部件来获得氮化物半导体时,晶体生长在基底 具有非极性主氮化物表面的情况下,通过依次层叠第一氮化物半导体层和第二氮化物半导体层而形成一个导电型氮化物半导体部,第二氮化物半导体层的厚度为400nm〜20mm,具有非极性 最外面。 通过选择上述用于晶体生长的基底,可以防止基于QCSE效应的有助于发光的电子和空穴进行空间分离,并且实现有效的辐射。 此外,通过将第二氮化物半导体层的厚度设定在适当的范围,氮化物半导体表面可以避免具有非常严重的不均匀性。
    • 5. 发明授权
    • Nitride semiconductor
    • 氮化物半导体
    • US08624220B2
    • 2014-01-07
    • US13112564
    • 2011-05-20
    • Hideyoshi HorieKaori Kurihara
    • Hideyoshi HorieKaori Kurihara
    • H01L29/06H01L31/00
    • H01L33/06H01L21/0237H01L21/0254H01L21/02573H01L21/02609H01L21/0262H01L33/0025H01L33/02H01L33/16H01L33/18H01L33/32H01L33/325
    • To provide a high-quality nitride semiconductor ensuring high emission efficiency of a light-emitting element fabricated. In the present invention, when obtaining a nitride semiconductor by sequentially stacking a one conductivity type nitride semiconductor part, a quantum well active layer structure part, and a another conductivity type nitride semiconductor part opposite the one conductivity type, the crystal is grown on a base having a nonpolar principal nitride surface, the one conductivity type nitride semiconductor part is formed by sequentially stacking a first nitride semiconductor layer and a second nitride semiconductor layer, and the second nitride semiconductor layer has a thickness of 400 nm to 20 μm and has a nonpolar outermost surface. By virtue of selecting the above-described base for crystal growth, an electron and a hole, which are contributing to light emission, can be prevented from spatial separation based on the QCSE effect and efficient radiation is realized. Also, by setting the thickness of the second nitride semiconductor layer to an appropriate range, the nitride semiconductor surface can avoid having extremely severe unevenness.
    • 提供确保所制造的发光元件的高发射效率的高质量氮化物半导体。 在本发明中,当通过依次层叠一个导电型氮化物半导体部件,量子阱活性层结构部分和与一种导电类型相反的另一导电型氮化物半导体部件来获得氮化物半导体时,晶体生长在基底 具有非极性主氮化物表面的情况下,通过依次层叠第一氮化物半导体层和第二氮化物半导体层而形成一个导电型氮化物半导体部,并且第二氮化物半导体层的厚度为400nm〜20μm,具有非极性 最外面。 通过选择上述用于晶体生长的基底,可以防止基于QCSE效应的有助于发光的电子和空穴进行空间分离,并且实现有效的辐射。 此外,通过将第二氮化物半导体层的厚度设定在适当的范围,氮化物半导体表面可以避免具有非常严重的不均匀性。
    • 6. 发明申请
    • NITRIDE SEMICONDUCTOR
    • 氮化物半导体
    • US20160043273A1
    • 2016-02-11
    • US14921570
    • 2015-10-23
    • Hideyoshi HORIEKaori Kurihara
    • Hideyoshi HORIEKaori Kurihara
    • H01L33/06H01L33/18H01L33/00H01L33/32
    • H01L33/06H01L21/0237H01L21/0254H01L21/02573H01L21/02609H01L21/0262H01L33/0025H01L33/02H01L33/16H01L33/18H01L33/32H01L33/325
    • To provide a high-quality nitride semiconductor ensuring high emission efficiency of a light-emitting element fabricated. In the present invention, when obtaining a nitride semiconductor by sequentially stacking a one conductivity type nitride semiconductor part, a quantum well active layer structure part, and a another conductivity type nitride semiconductor part opposite the one conductivity type, the crystal is grown on a base having a nonpolar principal nitride surface, the one conductivity type nitride semiconductor part is formed by sequentially stacking a first nitride semiconductor layer and a second nitride semiconductor layer, and the second nitride semiconductor layer has a thickness of 400 nm to 20 μm and has a nonpolar outermost surface. By virtue of selecting the above-described base for crystal growth, an electron and a hole, which are contributing to light emission, can be prevented from spatial separation based on the QCSE effect and efficient radiation is realized. Also, by setting the thickness of the second nitride semiconductor layer to an appropriate range, the nitride semiconductor surface can avoid having extremely severe unevenness.
    • 提供确保所制造的发光元件的高发射效率的高质量氮化物半导体。 在本发明中,当通过依次层叠一个导电型氮化物半导体部件,量子阱活性层结构部分和与一种导电类型相反的另一导电型氮化物半导体部件来获得氮化物半导体时,晶体生长在基底 具有非极性主氮化物表面的情况下,通过依次层叠第一氮化物半导体层和第二氮化物半导体层而形成一个导电型氮化物半导体部,第二氮化物半导体层的厚度为400nm〜20μm,具有非极性 最外面。 通过选择上述用于晶体生长的基底,可以防止基于QCSE效应的有助于发光的电子和空穴进行空间分离,并且实现有效的辐射。 此外,通过将第二氮化物半导体层的厚度设定在适当的范围,氮化物半导体表面可以避免具有非常严重的不均匀性。
    • 8. 发明授权
    • Vertical-to-surface transmission electro-photonic device with ion
implanted current control regions
    • 具有离子注入电流控制区域的垂直到表面透射电子光子器件
    • US5500868A
    • 1996-03-19
    • US190242
    • 1994-02-01
    • Kaori Kurihara
    • Kaori Kurihara
    • H01S5/00H01S5/183H01S5/20H01S3/18
    • H01S5/18308H01S5/18305H01S5/18341H01S5/18344H01S5/18352H01S5/2063H01S5/2081H01S5/2086
    • The invention provides a vertical-to-surface transmission electro-photonic semiconductor device with a mesa structure of light reflective multiple layers in which the device includes a high resistive region for a carrier confinement. The high resistive region is formed by an ion-implantation of proton in a downward oblique direction during a rotation of a semiconductor substrate with use of a photo-resist mask whose horizontal width is larger than that of the mesa structure. The high resistive region defines a light emitting area of an active layer, an inverse circular truncated cone like definition of a top cladding region and a circular truncated cone like definition of a bottom cladding region. The oblique angle ion-implantation permits the top cladding region to be free from any exposure of the ion-implantation thereby an electrical resistance of the device is reduced.
    • 本发明提供一种具有光反射多层的台面结构的垂直对表面透射电子光子半导体器件,其中器件包括用于载流子限制的高电阻区域。 通过使用水平宽度大于台面结构的光致抗蚀剂掩模在半导体衬底的旋转期间,通过在向下倾斜的方向上离子注入质子来形成高电阻区域。 高电阻区域限定有源层的发光区域,如顶部包层区域的倒圆锥形锥体,以及底部包层区域的圆形截锥体。 倾斜角度离子注入允许顶部覆层区域没有离子注入的任何暴露,从而减小了器件的电阻。