会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Diamond pn junction diode and method for the fabrication thereof
    • 金刚石pn结二极管及其制造方法
    • US06727171B2
    • 2004-04-27
    • US10368482
    • 2003-02-20
    • Daisuke TakeuchiHideyuki WatanabeHideyo OkushiMasataka HasegawaMasahiko OguraNaoto KobayashiKoji KajimuraSadanori Yamanaka
    • Daisuke TakeuchiHideyuki WatanabeHideyo OkushiMasataka HasegawaMasahiko OguraNaoto KobayashiKoji KajimuraSadanori Yamanaka
    • H01L214763
    • H01L33/34H01L29/1602H01L29/6603H01L29/66136H01L29/861H01S5/3045H01S5/305
    • A diamond pn junction diode includes a p-type diamond thin-film layer formed on a substrate and an n-type diamond thin-film layer formed by forming a high-quality undoped diamond thin-film layer on the p-type diamond thin-film layer and ion-implanting an impurity into the high-quality undoped diamond thin-film layer, or alternatively includes an n-type diamond thin-film layer formed on a substrate and a p-type diamond thin-film layer formed by forming a high-quality undoped diamond thin-film layer on the n-type diamond thin-film layer and ion-implanting an impurity into the high-quality undoped diamond thin-film layer. A method of fabricating a diamond pn junction diode includes the steps of forming a p-type diamond thin-film layer on a substrate, forming a high-quality undoped diamond thin-film layer on the p-type diamond thin-film layer, and making the high-quality undoped diamond thin-film layer an n-type diamond thin-film layer by ion implantation of an impurity, or alternatively includes the steps of forming an n-type diamond thin-film layer on a substrate, forming a high-quality undoped diamond thin-film layer on the n-type diamond thin-film layer, and making the high-quality undoped diamond thin-film layer a p-type diamond thin-film layer by ion implantation of an impurity.
    • 金刚石pn结二极管包括形成在基板上的p型金刚石薄膜层和通过在p型金刚石薄膜层上形成高品质未掺杂的金刚石薄膜层形成的n型金刚石薄膜层, 膜层,并将杂质离子注入到高质量未掺杂的金刚石薄膜层中,或者还可以包括形成在基板上的n型金刚石薄膜层和形成p型金刚石薄膜层的p型金刚石薄膜层, 在n型金刚石薄膜层上的高品质未掺杂金刚石薄膜层,并将杂质离子注入到高品质未掺杂的金刚石薄膜层中。 制造金刚石pn结二极管的方法包括以下步骤:在衬底上形成p型金刚石薄膜层,在p型金刚石薄膜层上形成高质量未掺杂的金刚石薄膜层;以及 通过离子注入杂质使高品质未掺杂的金刚石薄膜层成为n型金刚石薄膜层,或者也可以包括在基板上形成n型金刚石薄膜层的步骤,形成高 在n型金刚石薄膜层上的质量未掺杂的金刚石薄膜层,并且通过离子注入杂质使高品质未掺杂的金刚石薄膜层成为p型金刚石薄膜层。
    • 7. 发明授权
    • Silicon carbide semiconductor device and its manufacturing method
    • 碳化硅半导体器件及其制造方法
    • US06833562B2
    • 2004-12-21
    • US10307363
    • 2002-12-02
    • Satoshi TanimotoHideyo Okushi
    • Satoshi TanimotoHideyo Okushi
    • H01L310312
    • H01L29/66068H01L29/1608H01L29/7395H01L29/7828H01L29/94
    • In silicon carbide semiconductor device and manufacturing method therefor, a metal electrode which is another than a gate electrode and which is contacted with a singlecrystalline silicon carbide substrate is treated with a predetermined heat process at a temperature which is lower than a thermal oxidization temperature by which a gate insulating film is formed and is sufficient to carry out a contact annealing between the singlecrystalline silicon carbide substrate and a metal after a whole surrounding of the gate insulating film is enclosed with the singlecrystalline silicon carbide substrate, a field insulating film, and the gate electrode. The present invention is applicable to a MOS capacitor, an n channel planar power MOSFET, and an n channel planar power IGBT.
    • 在碳化硅半导体器件及其制造方法中,以与栅极电极不同且与单晶碳化硅基板接触的金属电极在预定的热处理下,在低于热氧化温度的温度下进行处理, 形成栅极绝缘膜,并且足以在单晶碳化硅衬底和金属之间进行接触退火,整个栅极绝缘膜周围被单晶碳化硅衬底,场绝缘膜和栅极封闭 电极。 本发明可应用于MOS电容器,n沟道平面功率MOSFET和n沟道平面功率IGBT。
    • 8. 发明申请
    • SEMICONDUCTOR DEVICE
    • 半导体器件
    • US20110017991A1
    • 2011-01-27
    • US12934199
    • 2009-02-27
    • Satoshi TanimotoNorihiko KiritaniToshiharu MakinoMasahiko OguraNorio TokudaHiromitsu KatoHideyo OkushiSatoshi Yamasaki
    • Satoshi TanimotoNorihiko KiritaniToshiharu MakinoMasahiko OguraNorio TokudaHiromitsu KatoHideyo OkushiSatoshi Yamasaki
    • H01L29/12H01L29/06H01L29/22H01L29/16H01L29/24H01L29/20
    • H01L29/861H01L29/1602H01L29/1608H01L29/20H01L29/2003H01L29/22H01L29/45H01L29/452H01L29/456H01L29/47H01L29/475H01L29/872
    • In this junction element 1, when a forward voltage is applied, a depletion layer is formed in a semiconductor layer 2, prohibiting electrons present in an electrode layer 4 to move into the semiconductor layer 2. For this reason, a majority of holes in a semiconductor layer 3 do not disappear by recombination with conduction electrons in the semiconductor layer 2, but reach the electrode layer 4 while diffusing into the semiconductor layer 2. Accordingly, the junction element 1 can serve as a good conductor for holes, while avoiding the influence of a resistance value, and allows a current to flow therethrough at a level equal to or more than that achieved by a semiconductor element formed of a Si or SiC semiconductor. The present invention is applicable to any semiconductor material in which at least one of a donor level and an acceptor level is located at a sufficiently deep position beyond a thermal excitation energy at an operating temperature, such as diamond, zinc oxide (ZnO), aluminum nitride (AlN), or boron nitride (BN). The present invention is also applicable to even a material having a shallow impurity level at room temperature, such as silicon (Si), silicon carbide (SiC), gallium nitride (GaN), gallium arsenide (GaAs), or germanium (Ge), as long as operation is performed at such a low temperature that the thermal excitation energy can be sufficiently small.
    • 在该接合元件1中,当施加正向电压时,在半导体层2中形成耗尽层,禁止存在于电极层4中的电子移动到半导体层2中。因此,大部分孔 半导体层3不会通过与半导体层2中的导电电子的复合而消失,而是在扩散到半导体层2中的同时到达电极层4.因此,接合元件1可以用作孔的良导体,同时避免影响 的电阻值,并且允许电流以等于或大于由Si或SiC半导体形成的半导体元件实现的电平流过。 本发明可应用于任何半导体材料,其中施主电平和受主电平中的至少一个位于超过工作温度下的热激发能的足够深的位置,例如金刚石,氧化锌(ZnO),铝 氮化物(AlN)或氮化硼(BN)。 本发明甚至也可应用于诸如硅(Si),碳化硅(SiC),氮化镓(GaN),砷化镓(GaAs)或锗(Ge)等室温下具有浅杂质水平的材料, 只要在如此低的温度下进行操作即可使热激发能足够小。
    • 10. 发明授权
    • Semiconductor device
    • 半导体器件
    • US09136400B2
    • 2015-09-15
    • US12934199
    • 2009-02-27
    • Satoshi TanimotoNorihiko KiritaniToshiharu MakinoMasahiko OguraNorio TokudaHiromitsu KatoHideyo OkushiSatoshi Yamasaki
    • Satoshi TanimotoNorihiko KiritaniToshiharu MakinoMasahiko OguraNorio TokudaHiromitsu KatoHideyo OkushiSatoshi Yamasaki
    • H01L21/00H01L29/861H01L29/16H01L29/20H01L29/22H01L29/45H01L29/47H01L29/872
    • H01L29/861H01L29/1602H01L29/1608H01L29/20H01L29/2003H01L29/22H01L29/45H01L29/452H01L29/456H01L29/47H01L29/475H01L29/872
    • In this junction element 1, when a forward voltage is applied, a depletion layer is formed in a semiconductor layer 2, prohibiting electrons present in an electrode layer 4 to move into the semiconductor layer 2. For this reason, a majority of holes in a semiconductor layer 3 do not disappear by recombination with conduction electrons in the semiconductor layer 2, but reach the electrode layer 4 while diffusing into the semiconductor layer 2. Accordingly, the junction element 1 can serve as a good conductor for holes, while avoiding the influence of a resistance value, and allows a current to flow therethrough at a level equal to or more than that achieved by a semiconductor element formed of a Si or SiC semiconductor. The present invention is applicable to any semiconductor material in which at least one of a donor level and an acceptor level is located at a sufficiently deep position beyond a thermal excitation energy at an operating temperature, such as diamond, zinc oxide (ZnO), aluminum nitride (AlN), or boron nitride (BN). The present invention is also applicable to even a material having a shallow impurity level at room temperature, such as silicon (Si), silicon carbide (SiC), gallium nitride (GaN), gallium arsenide (GaAs), or germanium (Ge), as long as operation is performed at such a low temperature that the thermal excitation energy can be sufficiently small.
    • 在该接合元件1中,当施加正向电压时,在半导体层2中形成耗尽层,禁止存在于电极层4中的电子移动到半导体层2中。因此,大部分孔 半导体层3不会通过与半导体层2中的导电电子的复合而消失,而是在扩散到半导体层2中的同时到达电极层4.因此,接合元件1可以用作孔的良导体,同时避免影响 的电阻值,并且允许电流以等于或大于由Si或SiC半导体形成的半导体元件实现的电平流过。 本发明可应用于任何半导体材料,其中施主电平和受主电平中的至少一个位于超过工作温度下的热激发能的足够深的位置,例如金刚石,氧化锌(ZnO),铝 氮化物(AlN)或氮化硼(BN)。 本发明甚至也可应用于诸如硅(Si),碳化硅(SiC),氮化镓(GaN),砷化镓(GaAs)或锗(Ge)等室温下具有浅杂质水平的材料, 只要在如此低的温度下进行操作即可使热激发能足够小。