会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Semiconductor device
    • 半导体器件
    • US09136400B2
    • 2015-09-15
    • US12934199
    • 2009-02-27
    • Satoshi TanimotoNorihiko KiritaniToshiharu MakinoMasahiko OguraNorio TokudaHiromitsu KatoHideyo OkushiSatoshi Yamasaki
    • Satoshi TanimotoNorihiko KiritaniToshiharu MakinoMasahiko OguraNorio TokudaHiromitsu KatoHideyo OkushiSatoshi Yamasaki
    • H01L21/00H01L29/861H01L29/16H01L29/20H01L29/22H01L29/45H01L29/47H01L29/872
    • H01L29/861H01L29/1602H01L29/1608H01L29/20H01L29/2003H01L29/22H01L29/45H01L29/452H01L29/456H01L29/47H01L29/475H01L29/872
    • In this junction element 1, when a forward voltage is applied, a depletion layer is formed in a semiconductor layer 2, prohibiting electrons present in an electrode layer 4 to move into the semiconductor layer 2. For this reason, a majority of holes in a semiconductor layer 3 do not disappear by recombination with conduction electrons in the semiconductor layer 2, but reach the electrode layer 4 while diffusing into the semiconductor layer 2. Accordingly, the junction element 1 can serve as a good conductor for holes, while avoiding the influence of a resistance value, and allows a current to flow therethrough at a level equal to or more than that achieved by a semiconductor element formed of a Si or SiC semiconductor. The present invention is applicable to any semiconductor material in which at least one of a donor level and an acceptor level is located at a sufficiently deep position beyond a thermal excitation energy at an operating temperature, such as diamond, zinc oxide (ZnO), aluminum nitride (AlN), or boron nitride (BN). The present invention is also applicable to even a material having a shallow impurity level at room temperature, such as silicon (Si), silicon carbide (SiC), gallium nitride (GaN), gallium arsenide (GaAs), or germanium (Ge), as long as operation is performed at such a low temperature that the thermal excitation energy can be sufficiently small.
    • 在该接合元件1中,当施加正向电压时,在半导体层2中形成耗尽层,禁止存在于电极层4中的电子移动到半导体层2中。因此,大部分孔 半导体层3不会通过与半导体层2中的导电电子的复合而消失,而是在扩散到半导体层2中的同时到达电极层4.因此,接合元件1可以用作孔的良导体,同时避免影响 的电阻值,并且允许电流以等于或大于由Si或SiC半导体形成的半导体元件实现的电平流过。 本发明可应用于任何半导体材料,其中施主电平和受主电平中的至少一个位于超过工作温度下的热激发能的足够深的位置,例如金刚石,氧化锌(ZnO),铝 氮化物(AlN)或氮化硼(BN)。 本发明甚至也可应用于诸如硅(Si),碳化硅(SiC),氮化镓(GaN),砷化镓(GaAs)或锗(Ge)等室温下具有浅杂质水平的材料, 只要在如此低的温度下进行操作即可使热激发能足够小。
    • 3. 发明申请
    • SEMICONDUCTOR DEVICE
    • 半导体器件
    • US20110017991A1
    • 2011-01-27
    • US12934199
    • 2009-02-27
    • Satoshi TanimotoNorihiko KiritaniToshiharu MakinoMasahiko OguraNorio TokudaHiromitsu KatoHideyo OkushiSatoshi Yamasaki
    • Satoshi TanimotoNorihiko KiritaniToshiharu MakinoMasahiko OguraNorio TokudaHiromitsu KatoHideyo OkushiSatoshi Yamasaki
    • H01L29/12H01L29/06H01L29/22H01L29/16H01L29/24H01L29/20
    • H01L29/861H01L29/1602H01L29/1608H01L29/20H01L29/2003H01L29/22H01L29/45H01L29/452H01L29/456H01L29/47H01L29/475H01L29/872
    • In this junction element 1, when a forward voltage is applied, a depletion layer is formed in a semiconductor layer 2, prohibiting electrons present in an electrode layer 4 to move into the semiconductor layer 2. For this reason, a majority of holes in a semiconductor layer 3 do not disappear by recombination with conduction electrons in the semiconductor layer 2, but reach the electrode layer 4 while diffusing into the semiconductor layer 2. Accordingly, the junction element 1 can serve as a good conductor for holes, while avoiding the influence of a resistance value, and allows a current to flow therethrough at a level equal to or more than that achieved by a semiconductor element formed of a Si or SiC semiconductor. The present invention is applicable to any semiconductor material in which at least one of a donor level and an acceptor level is located at a sufficiently deep position beyond a thermal excitation energy at an operating temperature, such as diamond, zinc oxide (ZnO), aluminum nitride (AlN), or boron nitride (BN). The present invention is also applicable to even a material having a shallow impurity level at room temperature, such as silicon (Si), silicon carbide (SiC), gallium nitride (GaN), gallium arsenide (GaAs), or germanium (Ge), as long as operation is performed at such a low temperature that the thermal excitation energy can be sufficiently small.
    • 在该接合元件1中,当施加正向电压时,在半导体层2中形成耗尽层,禁止存在于电极层4中的电子移动到半导体层2中。因此,大部分孔 半导体层3不会通过与半导体层2中的导电电子的复合而消失,而是在扩散到半导体层2中的同时到达电极层4.因此,接合元件1可以用作孔的良导体,同时避免影响 的电阻值,并且允许电流以等于或大于由Si或SiC半导体形成的半导体元件实现的电平流过。 本发明可应用于任何半导体材料,其中施主电平和受主电平中的至少一个位于超过工作温度下的热激发能的足够深的位置,例如金刚石,氧化锌(ZnO),铝 氮化物(AlN)或氮化硼(BN)。 本发明甚至也可应用于诸如硅(Si),碳化硅(SiC),氮化镓(GaN),砷化镓(GaAs)或锗(Ge)等室温下具有浅杂质水平的材料, 只要在如此低的温度下进行操作即可使热激发能足够小。
    • 6. 发明授权
    • Method of producing semiconductor device
    • 半导体器件的制造方法
    • US5883013A
    • 1999-03-16
    • US578127
    • 1995-12-26
    • Takatoshi NoguchiNorihiko Kiritani
    • Takatoshi NoguchiNorihiko Kiritani
    • H01L21/308H01L21/311H01L21/312H01L21/314H01L21/31
    • H01L21/3121H01L21/31111H01L21/31133
    • A method of forming a silicone resin film for protecting a semiconductor substrate on the substrate for a certain period of time and then removing the film from the substrate including the steps of: (a) forming the silicone resin film, on at least one portion of the substrate; (b) treating the film with an organic solvent, so that a majority of the film is dissolved in the organic solvent and thereby removed from the substrate and that a residue remains on the substrate; (c) oxidizing the residue to silicon oxide; and (d) treating the silicon oxide with an aqueous solution containing at least one of hydrogen fluoride and ammonium fluoride, so as to dissolve the silicon oxide in the solution and to thereby remove the silicon oxide from the substrate is described. The silicone resin film formed on the substrate can be easily completely removed, without damaging the electrical characteristics of the semiconductor.
    • 一种形成有机硅树脂膜的方法,用于保护半导体衬底在衬底上一段时间,然后从衬底上除去膜,包括以下步骤:(a)在有机硅树脂膜的至少一部分上形成有机硅树脂膜, 基材; (b)用有机溶剂处理薄膜,使得大部分薄膜溶解在有机溶剂中,从而从基材上除去残余物残留在基材上; (c)将残余物氧化成氧化硅; 并且(d)描述了用含有氟化氢和氟化铵中的至少一种的水溶液处理氧化硅,从而将氧化硅溶解在溶液中,从而从衬底上除去氧化硅。 形成在基板上的有机硅树脂膜可以容易地完全去除,而不损害半导体的电特性。
    • 10. 发明授权
    • Electrochemical etching method
    • 电化学蚀刻法
    • US5167778A
    • 1992-12-01
    • US740521
    • 1991-08-05
    • Hiroyuki KanekoMakoto UchiyamaHidetoshi NojiriNorihiko Kiritani
    • Hiroyuki KanekoMakoto UchiyamaHidetoshi NojiriNorihiko Kiritani
    • G01L9/04C25F3/30G01L9/00H01L21/3063H01L29/84
    • H01L21/3063
    • An electrochemical etching method for producing semiconductor diaphragms from a semiconductor wafer comprised of a first semiconductor layer of a first conductivity type and a second semiconductor layer formed on the first semiconductor layer, the second semiconductor layer having a second conductivity type different than the first semiconductor layer. The semiconductor wafer is placed in an etching solution with respect to a counter-electrode immersed in the etching solution. The semiconductor wafer has a plurality of chips each of which includes at least one third semiconductor layer of the first conductivity type. The third semiconductor layer extends through the second semiconductor layer to the first semiconductor layer. A first positive potential is applied to the first and third semiconductor layers with respect to the counter-electrode. A second positive potential is applied to the second semiconductor layer with respect to the first semiconductor layer.
    • 一种用于从由第一导电类型的第一半导体层和形成在第一半导体层上形成的第二半导体层的半导体晶片制造半导体膜片的电化学蚀刻方法,所述第二半导体层具有不同于第一半导体层的第二导电类型 。 将半导体晶片相对于浸在蚀刻溶液中的对电极放置在蚀刻溶液中。 半导体晶片具有多个芯片,每个芯片包括至少一个第一导电类型的第三半导体层。 第三半导体层延伸穿过第二半导体层到第一半导体层。 第一和第三半导体层相对于反电极施加第一正电位。 第二正电位相对于第一半导体层施加到第二半导体层。