会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • MULTIPLE SUPERIMPOSED INTERFACE PATTERN POROUS MICROSTRUCTURE MULTI LAYER BIOSENSING METHOD
    • 多层超界面图案多孔微结构多层生物传感方法
    • US20110170106A1
    • 2011-07-14
    • US12683895
    • 2010-01-07
    • Claudia PacholskiGordon M. MiskellyMichael J. Sailor
    • Claudia PacholskiGordon M. MiskellyMichael J. Sailor
    • G01J3/45
    • G01N21/55G01J3/26
    • A preferred embodiment biosensor is a multi-layer micro-porous thin film structure. Pores in a top layer of the micro-porous thin film structure are sized to accept a first molecule of interest. Pores in a second layer of the micro-porous thin film structure are smaller than the pores in the top layer and are sized to accept a second molecule of interest that is smaller than the first molecule of interest. The pores in the second layer are too small to accept the first molecule of interest. The pores in the top layer and the pores in the second layer are sized and arranged such that light reflected from the multi-layer micro-porous thin film structure produces multiple superimposed interference patterns that can be resolved. In preferred embodiments, the multi-layer micro-porous thin film structure is a porous silicon thin film multi-layer structure formed on a silicon substrate, such as a silicon wafer. Specific and nonspecific binding can be detected with biosensors of the invention. The position of peaks in the Fourier transform of the reflection spectrum and the shift in peak amplitudes can be used to determine the presence and quantity of targeted biological molecules of interest.
    • 优选实施方式生物传感器是多层微孔薄膜结构。 微孔薄膜结构的顶层中的孔被设定为接受第一分子感兴趣。 微孔薄膜结构的第二层中的孔比顶层中的孔小,并且其尺寸适于接受小于第一目的分子的第二感兴趣的分子。 第二层中的孔太小,不能接受第一分子。 顶层中的孔和第二层中的孔的尺寸和布置使得从多层微孔薄膜结构反射的光产生可以解决的多个叠加的干涉图案。 在优选的实施方案中,多层微孔薄膜结构是在诸如硅晶片的硅衬底上形成的多孔硅薄膜多层结构。 可以用本发明的生物传感器检测特异性和非特异性结合。 反射光谱的傅立叶变换中的峰位置和峰值幅度的偏移可用于确定目标生物分子的存在和数量。
    • 3. 发明申请
    • Optical Sensor For Detecting Chemical Reaction Activity
    • 用于检测化学反应活性的光学传感器
    • US20090215191A1
    • 2009-08-27
    • US12087691
    • 2007-01-10
    • Michael J. SailorManuel M. OroscoClaudia PacholskiGordon M. Miskelly
    • Michael J. SailorManuel M. OroscoClaudia PacholskiGordon M. Miskelly
    • G01N21/55G01N21/01C12M1/34
    • G01N33/552Y10S435/808Y10S435/973Y10S436/805
    • The invention provides an optical sensor for detecting chemical reaction activity, including, e.g., enzyme activity and catalytic or reactive molecule activity. An optical sensor of the invention includes a porous photonic film that produces a predetermined spectral reflectance response. In preferred embodiments, the film has a chemical coating (such as a hydrophobic layer) within its pores with an affinity for the reaction product(s) of the catalytic or otherwise reactive analyte A coating can also act as a protective layer in preferred embodiment. A thin substrate susceptible to reaction by at least one analyte of interest is on the surface of the thin film to block pores of the thin film. A method of detecting chemical reaction activity of the invention exposes the optical sensor to an analyte of interest, such as an enzyme or otherwise catalytic or reactive molecule. The optical sensor is subjected to light and the reflectivity spectrum of the optical sensor is monitored for a change indicative of reaction activity. Monitoring can include observation for a visible change or data acquisition via instruments such as a spectrometer for monitoring for a change in interferometric reflectance spectra.
    • 本发明提供了一种用于检测化学反应活性的光学传感器,包括例如酶活性和催化或反应性分子活性。 本发明的光学传感器包括产生预定光谱反射响应的多孔光子膜。 在优选的实施方案中,膜在其孔内具有对催化或其它反应性分析物的反应产物具有亲和性的化学涂层(例如疏水层)。在优选实施方案中,涂层也可以用作保护层。 易受至少一种感兴趣的分析物反应的薄基材在薄膜的表面上,以阻挡薄膜的孔。 检测本发明的化学反应活性的方法将光学传感器暴露于感兴趣的分析物,例如酶或其它催化或反应性分子。 对光学传感器进行光照射,并且监测光学传感器的反射光谱以表明反应活性。 监测可以包括通过诸如用于监测干涉反射光谱变化的光谱仪等仪器进行可见变化或数据采集的观察。
    • 4. 发明授权
    • Optical sensor for detecting chemical reaction activity
    • 用于检测化学反应活性的光学传感器
    • US07759129B2
    • 2010-07-20
    • US12087691
    • 2007-01-10
    • Michael J. SailorManuel M. OroscoClaudia PacholskiGordon M. Miskelly
    • Michael J. SailorManuel M. OroscoClaudia PacholskiGordon M. Miskelly
    • G01N21/00
    • G01N33/552Y10S435/808Y10S435/973Y10S436/805
    • The invention provides an optical sensor for detecting chemical reaction activity, including, e.g., enzyme activity and catalytic or reactive molecule activity. An optical sensor of the invention includes a porous photonic film that produces a predetermined spectral reflectance response. In preferred embodiments, the film has a chemical coating (such as a hydrophobic layer) within its pores with an affinity for the reaction product(s) of the catalytic or otherwise reactive analyte A coating can also act as a protective layer in preferred embodiment. A thin substrate susceptible to reaction by at least one analyte of interest is on the surface of the thin film to block pores of the thin film. A method of detecting chemical reaction activity of the invention exposes the optical sensor to an analyte of interest, such as an enzyme or otherwise catalytic or reactive molecule. The optical sensor is subjected to light and the reflectivity spectrum of the optical sensor is monitored for a change indicative of reaction activity. Monitoring can include observation for a visible change or data acquisition via instruments such as a spectrometer for monitoring for a change in interferometric reflectance spectra.
    • 本发明提供了一种用于检测化学反应活性的光学传感器,包括例如酶活性和催化或反应性分子活性。 本发明的光学传感器包括产生预定光谱反射响应的多孔光子膜。 在优选的实施方案中,膜在其孔内具有对催化或其它反应性分析物的反应产物具有亲和性的化学涂层(例如疏水层)。在优选实施方案中,涂层也可以用作保护层。 易受至少一种感兴趣的分析物反应的薄基材在薄膜的表面上,以阻挡薄膜的孔。 检测本发明的化学反应活性的方法将光学传感器暴露于感兴趣的分析物,例如酶或其它催化或反应性分子。 对光学传感器进行光照射,并且监测光学传感器的反射光谱以表明反应活性。 监测可以包括通过诸如用于监测干涉反射光谱变化的光谱仪等仪器进行可见变化或数据采集的观察。
    • 5. 发明授权
    • Method for the production of conical nanostructures on substrate surfaces
    • 在衬底表面上生产锥形纳米结构的方法
    • US09469526B2
    • 2016-10-18
    • US13518594
    • 2010-12-17
    • Christoph MorhardClaudia PacholskiJoachim P. Spatz
    • Christoph MorhardClaudia PacholskiJoachim P. Spatz
    • B44C1/22G02B1/10B81C1/00
    • B81C1/00031B81B2203/0361B81B2207/056Y10T428/24479
    • The invention relates to conical structures on substrate surfaces, in particular optical elements, to methods for the production thereof and to the use thereof, in particular in optical devices, solar cells and sensors. The conical nanostructures according to the invention are suitable in particular for providing substrate surfaces having very low light reflection. The method according to the invention for producing conical nanostructures on substrate surfaces comprises at least the steps of: a) providing a substrate surface covered with nanoparticles; b) etching the substrate surface covered with nanoparticles to a depth of at least 100 nm, wherein the nanoparticles act as an etching mask and the etching parameters are set in such a way that hyperboloid structures are produced underneath the nanoparticles; c) breaking the hyperboloid structures in the region of the smallest diameter by exerting mechanical forces, wherein the structures remaining on the substrate surface have a conical shape which corresponds substantially to half a single-shell hyperboloid.
    • 本发明涉及衬底表面,特别是光学元件上的锥形结构,用于生产它的方法及其用途,特别是在光学器件,太阳能电池和传感器中的应用。 根据本发明的锥形纳米结构特别适用于提供具有非常低的光反射的基底表面。 根据本发明的用于在衬底表面上生产锥形纳米结构的方法包括至少以下步骤:a)提供覆盖有纳米颗粒的衬底表面; b)将覆盖有纳米颗粒的衬底表面蚀刻至少至少100nm的深度,其中所述纳米颗粒用作蚀刻掩模,并且蚀刻参数被设置为在纳米颗粒下方产生双曲面结构; c)通过施加机械力来破坏最小直径区域中的双曲面结构,其中残留在基底表面上的结构具有基本上对应于单壳双曲面的一半的圆锥形状。
    • 7. 发明申请
    • Porous microstructure multi layer spectroscopy and biosensing
    • 多孔微结构多层光谱和生物传感
    • US20070108465A1
    • 2007-05-17
    • US11371319
    • 2006-03-08
    • Claudia PacholskiGordon MiskellyMichael Sailor
    • Claudia PacholskiGordon MiskellyMichael Sailor
    • H01L33/00
    • G01N21/55G01J3/26
    • A preferred embodiment biosensor is a multi-layer micro-porous thin film structure. Pores in a top layer of the micro-porous thin film structure are sized to accept a first molecule of interest. Pores in a second layer of the micro-porous thin film structure are smaller than the pores in the top layer and are sized to accept a second molecule of interest that is smaller than the first molecule of interest. The pores in the second layer are too small to accept the first molecule of interest. The pores in the top layer and the pores in the second layer are sized and arranged such that light reflected from the multi-layer micro-porous thin film structure produces multiple superimposed interference patterns that can be resolved. In preferred embodiments, the multi-layer micro-porous thin film structure is a porous silicon thin film multi-layer structure formed on a silicon substrate, such as a silicon wafer. Specific and nonspecific binding can be detected with biosensors of the invention. The position of peaks in the Fourier transform of the reflection spectrum and the shift in peak amplitudes can be used to determine the presence and quantity of targeted biological molecules of interest.
    • 优选实施方式生物传感器是多层微孔薄膜结构。 微孔薄膜结构的顶层中的孔被设定为接受第一分子感兴趣。 微孔薄膜结构的第二层中的孔比顶层中的孔小,并且其尺寸适于接受小于第一目的分子的第二感兴趣的分子。 第二层中的孔太小,不能接受第一分子。 顶层中的孔和第二层中的孔的尺寸和布置使得从多层微孔薄膜结构反射的光产生可以解决的多个叠加的干涉图案。 在优选的实施方案中,多层微孔薄膜结构是在诸如硅晶片的硅衬底上形成的多孔硅薄膜多层结构。 可以用本发明的生物传感器检测特异性和非特异性结合。 反射光谱的傅立叶变换中的峰位置和峰值幅度的偏移可用于确定目标生物分子的存在和数量。
    • 8. 发明授权
    • Highly ordered arrays of colloidal 2D crystals and methods for producing the same
    • 高度有序的胶体二维晶体阵列及其制备方法
    • US09090987B2
    • 2015-07-28
    • US14003005
    • 2011-03-04
    • Stefan B. QuintClaudia Pacholski
    • Stefan B. QuintClaudia Pacholski
    • C30B7/02B81C1/00B82Y40/00H01L21/027H01L21/033H01L21/311C03C17/00C23C18/16B05D1/18C30B29/58B05D1/00B05D3/12
    • C30B7/02B05D1/00B05D1/005B05D1/18B05D3/12B81C1/00031B82Y40/00C03C17/007C23C18/1605C30B29/58H01L21/0271H01L21/0337H01L21/31144
    • The present invention relates to highly ordered arrays of colloidal 2D crystals on a substrate and to an improved method for producing the same. The method according to the invention for producing an highly ordered array of colloidal 2D crystals on a substrate comprises the following steps: a) providing a suspension of microspheres comprising poly-N-isopropylamide (polyNIPAM), the microspheres being selected from pure poly-N-isopropylamide (polyNIPAM) hydrogel microspheres, functionalized polyNIPAM microspheres, and polymeric or inorganic beads carrying poly-N-isopropyl-amide (polyNIPAM) hydrogel chains, in an aqueous medium on a substrate, wherein the aqueous medium comprises a mixture of water and a lower alkyl alcohol, b) subjecting the suspension deposited on the substrate after step a) to a shear force, and c) drying the suspension. In a preferred embodiment of the invention, the shear force is generated by applying a pulsed gas stream to the substrate surface. The colloidal 2D crystal arrays obtained by this method have an exceptional high long range order, including monocrystalline domains in the range of square millimeters.
    • 本发明涉及衬底上胶体二维晶体的高度有序阵列及其制备方法。 根据本发明的用于在基材上生产高度有序排列的胶体2D晶体的方法包括以下步骤:a)提供包含聚-N-异丙基酰胺(polyNIPAM)的微球的悬浮液,所述微球选自纯多晶N - 异丙基酰胺(polyNIPAM)水凝胶微球,功能化聚NIPAM微球,以及在基底上的水性介质中携带聚-N-异丙酰胺(polyNIPAM)水凝胶链的聚合或无机小珠,其中水性介质包含水和 低级烷基醇,b)在步骤a)之后使沉积在基材上的悬浮液经受剪切力,和c)干燥悬浮液。 在本发明的优选实施例中,剪切力通过将脉冲气流施加到基底表面而产生。 通过该方法获得的胶体2D晶体阵列具有特别高的长范围顺序,包括在平方毫米范围内的单晶畴。
    • 9. 发明申请
    • HIGHLY ORDERED ARRAYS OF COLLOIDAL 2D CRYSTALS AND METHODS FOR PRODUCING THE SAME
    • 胶体二维晶体的高阶阵列及其生产方法
    • US20130338303A1
    • 2013-12-19
    • US14003005
    • 2011-03-04
    • Stefan B. QuintClaudia Pacholski
    • Stefan B. QuintClaudia Pacholski
    • C30B7/02C30B29/58
    • C30B7/02B05D1/00B05D1/005B05D1/18B05D3/12B81C1/00031B82Y40/00C03C17/007C23C18/1605C30B29/58H01L21/0271H01L21/0337H01L21/31144
    • The present invention relates to highly ordered arrays of colloidal 2D crystals on a substrate and to an improved method for producing the same. The method according to the invention for producing an highly ordered array of colloidal 2D crystals on a substrate comprises the following steps: a) providing a suspension of microspheres comprising poly-N-isopropylamide (polyNIPAM), the microspheres being selected from pure poly-N-isopropylamide (polyNIPAM) hydrogel microspheres, functionalized polyNIPAM microspheres, and polymeric or inorganic beads carrying poly-N-isopropyl-amide (polyNIPAM) hydrogel chains, in an aqueous medium on a substrate, wherein the aqueous medium comprises a mixture of water and a lower alkyl alcohol, b) subjecting the suspension deposited on the substrate after step a) to a shear force, and c) drying the suspension. In a preferred embodiment of the invention, the shear force is generated by applying a pulsed gas stream to the substrate surface. The colloidal 2D crystal arrays obtained by this method have an exceptional high long range order, including monocrystalline domains in the range of square millimetres.
    • 本发明涉及衬底上胶体二维晶体的高度有序阵列及其制备方法。 根据本发明的用于在基材上生产高度有序排列的胶体2D晶体的方法包括以下步骤:a)提供包含聚-N-异丙基酰胺(polyNIPAM)的微球的悬浮液,所述微球选自纯多晶N - 异丙基酰胺(polyNIPAM)水凝胶微球,功能化聚NIPAM微球,以及在基底上的水性介质中携带聚-N-异丙酰胺(polyNIPAM)水凝胶链的聚合物或无机珠,其中水性介质包含水和 低级烷基醇,b)在步骤a)之后使沉积在基材上的悬浮液经受剪切力,和c)干燥悬浮液。 在本发明的优选实施例中,剪切力通过将脉冲气流施加到基底表面而产生。 通过该方法获得的胶体2D晶体阵列具有特别高的长范围顺序,包括在平方毫米范围内的单晶畴。
    • 10. 发明申请
    • METHOD FOR SPATIALLY RESOLVED ENLARGEMENT OF NANOPARTICLES ON A SUBSTRATE SURFACE
    • 在基底表面上空间解析纳米粒子的方法
    • US20120244322A1
    • 2012-09-27
    • US13510107
    • 2010-11-15
    • Christoph MorhardClaudia PacholskiJoachim P. Spatz
    • Christoph MorhardClaudia PacholskiJoachim P. Spatz
    • B05D3/10B32B15/02B05D3/06B32B3/30B32B5/16B82Y30/00
    • C23C18/1603C23C18/1605C23C18/1612C23C18/1667C23C18/1841C23C18/1889C23C18/44Y10T428/24612Y10T428/24909
    • The invention relates to a method for spatially resolving the enlargement and fine adjustment of precious metal nanoparticles according to size on a substrate surface and to the nanoparticle arrangements and nanostructured substrate surfaces thereby produced and to the use thereof. The invention particularly relates to a method for spatially resolving the enlargement of precious metal nanoparticles present on a substrate, comprising the following steps: a) providing a substrate coated by precious metal nanoparticles, b) optionally functionalizing the substrate by means of an agent which supports the adhesion of the precious metal nanoparticles to the substrate, c) contacting the substrate with a precious metal salt solution, d) UV irradiating the substrate in contact with the precious metal salt solution, thus creating a reduction of the precious metal salt and a currentless deposition of elementary precious metal on the precious metal nanoparticles and corresponding growth of the precious metal nanoparticles in the irradiated regions of the substrate, and e) optionally using a mask in order to create localized growth of the precious metal nanoparticles in predetermined regions of the substrate.
    • 本发明涉及一种用于根据基材表面上的尺寸空间分辨贵金属纳米颗粒的扩大和微调的方法,以及由此产生的纳米颗粒布置和纳米结构的基材表面及其用途。 本发明特别涉及一种用于空间分辨存在于基底上的贵金属纳米颗粒的增大的方法,包括以下步骤:a)提供用贵金属纳米颗粒涂覆的基材,b)任选地通过支持 贵金属纳米颗粒与基底的粘附,c)使基底与贵金属盐溶液接触,d)将紫外线照射到与贵金属盐溶液接触的底物上,从而产生贵金属盐的减少和无电流 在贵金属纳米颗粒上沉积基本贵金属并在衬底的照射区域中贵金属纳米颗粒的相应生长,以及e)任选地使用掩模以在贵金属纳米颗粒在衬底的预定区域中产生局部生长 。